메뉴 건너뛰기




Volumn 7, Issue , 2016, Pages

Quantum mechanical effects in plasmonic structures with subnanometre gaps

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRON; EXPERIMENTAL STUDY; FUTURE PROSPECT; METAL; NANOPARTICLE; QUANTUM MECHANICS; THEORETICAL STUDY;

EID: 84973375691     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms11495     Document Type: Review
Times cited : (744)

References (132)
  • 2
    • 77958070569 scopus 로고    scopus 로고
    • Plasmonics: An emerging field fostered by Nano Letters
    • Halas, N. J. Plasmonics: an emerging field fostered by Nano Letters. Nano Lett. 10, 3816-3822 (2010).
    • (2010) Nano Lett , vol.10 , pp. 3816-3822
    • Halas, N.J.1
  • 3
    • 0942277688 scopus 로고    scopus 로고
    • Electromagnetic fields around silver nanoparticles and dimers
    • Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357-366 (2004).
    • (2004) J. Chem. Phys , vol.120 , pp. 357-366
    • Hao, E.1    Schatz, G.C.2
  • 4
    • 0142057525 scopus 로고    scopus 로고
    • Optical antennas: Resonators for local field enhancement
    • Crozier, K. B., Sundaramurthy, A., Kino, G. S. & Quate, C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632-4642 (2003).
    • (2003) J. Appl. Phys , vol.94 , pp. 4632-4642
    • Crozier, K.B.1    Sundaramurthy, A.2    Kino, G.S.3    Quate, C.F.4
  • 5
    • 80054838127 scopus 로고    scopus 로고
    • Light propagation with phase discontinuities: Generalized laws of reflection and refraction
    • Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011).
    • (2011) Science , vol.334 , pp. 333-337
    • Yu, N.1
  • 6
    • 84856970972 scopus 로고    scopus 로고
    • Chromatic plasmonic polarizers for active visible color filtering and polarimetry
    • Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026-1031 (2012).
    • (2012) Nano Lett , vol.12 , pp. 1026-1031
    • Ellenbogen, T.1    Seo, K.2    Crozier, K.B.3
  • 7
    • 78751690181 scopus 로고    scopus 로고
    • Low-loss plasmonic metamaterials
    • Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290-291 (2011).
    • (2011) Science , vol.331 , pp. 290-291
    • Boltasseva, A.1    Atwater, H.A.2
  • 9
    • 40449120903 scopus 로고    scopus 로고
    • Nanostructured plasmonic sensors
    • Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494-521 (2008).
    • (2008) Chem. Rev , vol.108 , pp. 494-521
    • Stewart, M.E.1
  • 10
    • 44349099089 scopus 로고    scopus 로고
    • Biosensing with plasmonic nanosensors
    • Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442-453 (2008).
    • (2008) Nat. Mater , vol.7 , pp. 442-453
    • Anker, J.N.1
  • 11
    • 84857295129 scopus 로고    scopus 로고
    • Photonic design principles for ultrahighefficiency photovoltaics
    • Polman, A. & Atwater, H. A. Photonic design principles for ultrahighefficiency photovoltaics. Nat. Mater. 11, 174-177 (2012).
    • (2012) Nat. Mater , vol.11 , pp. 174-177
    • Polman, A.1    Atwater, H.A.2
  • 12
    • 79958809129 scopus 로고    scopus 로고
    • Plasmons in strongly coupled metallic nanostructures
    • Halas, N. J., Lal, S., Chang, W. S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913-3961 (2011).
    • (2011) Chem. Rev , vol.111 , pp. 3913-3961
    • Halas, N.J.1    Lal, S.2    Chang, W.S.3    Link, S.4    Nordlander, P.5
  • 15
    • 84859922275 scopus 로고    scopus 로고
    • Single-molecule surface-enhanced Raman spectroscopy
    • Le Ru, E. C. & Etchegoin, P. G. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 63, 65-87 (2012).
    • (2012) Annu. Rev. Phys. Chem , vol.63 , pp. 65-87
    • Le Ru, E.C.1    Etchegoin, P.G.2
  • 16
    • 1642325089 scopus 로고    scopus 로고
    • Single molecule detection using surface-enhanced Raman scattering (SERS)
    • Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667-1670 (1997).
    • (1997) Phys. Rev. Lett , vol.78 , pp. 1667-1670
    • Kneipp, K.1
  • 17
    • 0031037501 scopus 로고    scopus 로고
    • Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
    • Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102-1106 (1997).
    • (1997) Science , vol.275 , pp. 1102-1106
    • Nie, S.1    Emory, S.R.2
  • 18
    • 0000107007 scopus 로고    scopus 로고
    • Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering
    • Xu, H., Bjerneld, E., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357-4360 (1999).
    • (1999) Phys. Rev. Lett , vol.83 , pp. 4357-4360
    • Xu, H.1    Bjerneld, E.2    Käll, M.3    Börjesson, L.4
  • 19
    • 0034270033 scopus 로고    scopus 로고
    • Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering
    • Xu, H., Aizpurua, J., Kall, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318-4324 (2000).
    • (2000) Phys. Rev. A , vol.62 , pp. 4318-4324
    • Xu, H.1    Aizpurua, J.2    Kall, M.3    Apell, P.4
  • 20
    • 29644432434 scopus 로고    scopus 로고
    • Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles
    • Sundaramurthy, A. et al. Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys. Rev. B 72, 165409 (2005).
    • (2005) Phys. Rev. A , vol.72
    • Sundaramurthy, A.1
  • 21
    • 24344504071 scopus 로고    scopus 로고
    • Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates
    • Talley, C. E. et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569-1574 (2005).
    • (2005) Nano Lett , vol.5 , pp. 1569-1574
    • Talley, C.E.1
  • 22
    • 72449189206 scopus 로고    scopus 로고
    • Nanogapengineerable Raman-active nanodumbbells for single-molecule detection
    • Lim, D.-K., Jeon, K.-S., Kim, H. M., Nam, J.-M. & Suh, Y. D. Nanogapengineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60-67 (2010).
    • (2010) Nat. Mater , vol.9 , pp. 60-67
    • Lim, D.-K.1    Jeon, K.-S.2    Kim, H.M.3    Nam, J.-M.4    Suh, Y.D.5
  • 23
    • 80051532798 scopus 로고    scopus 로고
    • Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using Cucurbit[n] uril 'Glue'
    • Taylor, R. W. et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using Cucurbit[n]uril 'Glue'. ACS Nano 3878-3887 (2011).
    • (2011) ACS Nano , pp. 3878-3887
    • Taylor, R.W.1
  • 25
    • 84869199644 scopus 로고    scopus 로고
    • Atomic-scale confinement of resonant optical fields
    • Kern, J. et al. Atomic-scale confinement of resonant optical fields. Nano Lett. 12, 5504-5509 (2012).
    • (2012) Nano Lett , vol.12 , pp. 5504-5509
    • Kern, J.1
  • 26
    • 84876067733 scopus 로고    scopus 로고
    • Resolution limits of electron-beam lithography toward the atomic scale
    • Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555-1558 (2013).
    • (2013) Nano Lett , vol.13 , pp. 1555-1558
    • Manfrinato, V.R.1
  • 27
    • 84887844668 scopus 로고    scopus 로고
    • Controlling subnanometer gaps in plasmonic dimers using graphene
    • Mertens, J. et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 13, 5033-5038 (2013).
    • (2013) Nano Lett , vol.13 , pp. 5033-5038
    • Mertens, J.1
  • 28
    • 57249093739 scopus 로고    scopus 로고
    • Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides
    • García de Abajo, F. J. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983-17987 (2008). A paper that shows the importance of considering nonlocal effects in modelling nanogap plasmons.
    • (2008) J. Phys. Chem. A , vol.112 , pp. 17983-17987
    • García De Abajo, F.J.1
  • 29
    • 77956451664 scopus 로고    scopus 로고
    • Optical properties of nanowire dimers with a spatially nonlocal dielectric function
    • McMahon, J. M., Gray, S. K. & Schatz, G. C. Optical properties of nanowire dimers with a spatially nonlocal dielectric function. Nano Lett. 10, 3473-3481 (2010).
    • (2010) Nano Lett , vol.10 , pp. 3473-3481
    • McMahon, J.M.1    Gray, S.K.2    Schatz, G.C.3
  • 30
    • 84857283588 scopus 로고    scopus 로고
    • Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response
    • Toscano, G., Raza, S., Jauho, A., Mortensen, N. A. & Wubs, M. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt. Express 20, 4176-4188 (2012).
    • (2012) Opt. Express , vol.20 , pp. 4176-4188
    • Toscano, G.1    Raza, S.2    Jauho, A.3    Mortensen, N.A.4    Wubs, M.5
  • 32
    • 84865573876 scopus 로고    scopus 로고
    • Probing the ultimate limits of plasmonic enhancement
    • Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072-1074 (2012). This paper demonstrates the impact of the nonlocal screening effect on nanogap plasmons via far-field measurements.
    • (2012) Science , vol.337 , pp. 1072-1074
    • Ciracì, C.1
  • 33
    • 84871568072 scopus 로고    scopus 로고
    • Angstrom-scale distance dependence of antenna-enhanced vibrational signals
    • Bochterle, J., Neubrech, F., Nagao, T. & Pucci, A. Angstrom-scale distance dependence of antenna-enhanced vibrational signals. ACS Nano 6, 10917-10923 (2012).
    • (2012) ACS Nano , vol.6 , pp. 10917-10923
    • Bochterle, J.1    Neubrech, F.2    Nagao, T.3    Pucci, A.4
  • 34
    • 77957312150 scopus 로고    scopus 로고
    • Quantum plasmonics: Optical properties and tunability of metallic nanorods
    • Zuloaga, J., Prodan, E. & Nordlander, P. Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4, 5269-5276 (2010).
    • (2010) ACS Nano , vol.4 , pp. 5269-5276
    • Zuloaga, J.1    Prodan, E.2    Nordlander, P.3
  • 35
    • 84883426239 scopus 로고    scopus 로고
    • Competition between surface screening and size quantization for surface plasmons in nanoparticles
    • Monreal, R. C., Antosiewicz, T. J. & Apell, S. P. Competition between surface screening and size quantization for surface plasmons in nanoparticles. N. J. Phys. 15, 083044 (2013).
    • (2013) N. J. Phys , vol.15
    • Monreal, R.C.1    Antosiewicz, T.J.2    Apell, S.P.3
  • 37
    • 0001386622 scopus 로고
    • Multipolar response of small metallic spheres: Nonlocal theory
    • Fuchs, R. & Claro, F. Multipolar response of small metallic spheres: nonlocal theory. Phys. Rev. B 35, 3722-3727 (1987).
    • (1987) Phys. Rev. A , vol.35 , pp. 3722-3727
    • Fuchs, R.1    Claro, F.2
  • 38
    • 0001083821 scopus 로고
    • Influence of a polarizable medium on the nonlocal optical response of a metal surface
    • Liebsch, A. & Schaich, W. L. Influence of a polarizable medium on the nonlocal optical response of a metal surface. Phys. Rev. B 52, 14219-14234 (1995).
    • (1995) Phys. Rev. A , vol.52 , pp. 14219-14234
    • Liebsch, A.1    Schaich, W.L.2
  • 39
    • 0001143896 scopus 로고
    • Blue shift of the Mie plasma frequency in Ag clusters and particles
    • Tiggesbäumker, J., Köller, L., Meiwes-Broer, K. H. & Liebsch, A. Blue shift of the Mie plasma frequency in Ag clusters and particles. Phys. Rev. A 48, 1749-1752 (1993).
    • (1993) Phys. Rev. A , vol.48 , pp. 1749-1752
    • Tiggesbäumker, J.1    Köller, L.2    Meiwes-Broer, K.H.3    Liebsch, A.4
  • 41
    • 0000849384 scopus 로고
    • Microscopic calculation of electromagnetic fields in refraction at a jellium-vaccum interface
    • Feibelman, P. J. Microscopic calculation of electromagnetic fields in refraction at a jellium-vaccum interface. Phys. Rev. B 12, 1319-1336 (1975).
    • (1975) Phys. Rev. A , vol.12 , pp. 1319-1336
    • Feibelman, P.J.1
  • 42
    • 84879616699 scopus 로고    scopus 로고
    • Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response
    • Teperik, T. V., Nordlander, P., Aizpurua, J. & Borisov, A. G. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys. Rev. Lett. 110, 263901 (2013). This paper points out the limitations of the hydrodyanmic Drude model and emphasizes the importance to consider the actual position of the plasmoninduced charges.
    • (2013) Phys. Rev. Lett , vol.110
    • Teperik, T.V.1    Nordlander, P.2    Aizpurua, J.3    Borisov, A.G.4
  • 43
    • 84930226050 scopus 로고    scopus 로고
    • Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics
    • Toscano, G. et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 7132
    • Toscano, G.1
  • 44
    • 0000963545 scopus 로고
    • Some surface effects in the hydrodynamic model of metals
    • Barton, G. Some surface effects in the hydrodynamic model of metals. Rep. Prog. Phys. 42, 963-1016 (1979).
    • (1979) Rep. Prog. Phys , vol.42 , pp. 963-1016
    • Barton, G.1
  • 46
    • 48549114117 scopus 로고
    • Electromagnetic interactions of molecules with metal surfaces
    • Ford, G. W. & Weber, W. H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113, 195-287 (1984).
    • (1984) Phys. Rep , vol.113 , pp. 195-287
    • Ford, G.W.1    Weber, W.H.2
  • 47
    • 84956243386 scopus 로고
    • A simple derivation of the surface contribution to the reflectivity of a metal and its use in the van der waals interaction
    • Apell, P. A simple derivation of the surface contribution to the reflectivity of a metal, and its use in the van der waals interaction. Phys. Scripta 24, 795-806 (1981).
    • (1981) Phys. Scripta , vol.24 , pp. 795-806
    • Apell, P.1
  • 49
    • 84878283099 scopus 로고    scopus 로고
    • Localized surface plasmon resonances in spatially dispersive nano-objects: Phenomenological treatise
    • Ginzburg, P. & Zayats, A. V. Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise. ACS Nano 7, 4334-4342 (2013).
    • (2013) ACS Nano , vol.7 , pp. 4334-4342
    • Ginzburg, P.1    Zayats, A.V.2
  • 50
    • 84927925678 scopus 로고    scopus 로고
    • Nonlocal optical response in metallic nanostructures
    • Raza, S., Bozhevolnyi, S. I., Wubs, M. & Asger Mortensen, N. Nonlocal optical response in metallic nanostructures. J. Phys. Condens. Matter 27, 183204 (2015). This review paper summarizes recent progress in modelling and understanding the nonlocal screening effect for nanogap plasmons.
    • (2015) J. Phys. Condens. Matter , vol.27
    • Raza, S.1    Bozhevolnyi, S.I.2    Wubs, M.3    Asger Mortensen, N.4
  • 51
    • 84899859144 scopus 로고    scopus 로고
    • A generalized non-local optical response theory for plasmonic nanostructures
    • Mortensen, N. A., Raza, S., Wubs, M., Søndergaard, T. & Bozhevolnyi, S. I. A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 4809 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 4809
    • Mortensen, N.A.1    Raza, S.2    Wubs, M.3    Søndergaard, T.4    Bozhevolnyi, S.I.5
  • 52
    • 61349134262 scopus 로고    scopus 로고
    • Attosecond physics
    • Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163-234 (2009).
    • (2009) Rev. Mod. Phys , vol.81 , pp. 163-234
    • Krausz, F.1    Ivanov, M.2
  • 53
    • 34848919386 scopus 로고
    • Surface studies by scanning tunneling microscopy
    • Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57-61 (1982).
    • (1982) Phys. Rev. Lett , vol.49 , pp. 57-61
    • Binnig, G.1    Rohrer, H.2    Gerber, C.3    Weibel, E.4
  • 54
    • 18344373200 scopus 로고
    • Theory and application for the scanning tunneling microscope
    • Tersoff, J. & Hamann, D. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998-2001 (1983).
    • (1983) Phys. Rev. Lett , vol.50 , pp. 1998-2001
    • Tersoff, J.1    Hamann, D.2
  • 55
    • 29244457479 scopus 로고
    • Quantum detection at millimeter wavelengths
    • Tucker, J. R. & Feldman, M. J. Quantum detection at millimeter wavelengths. Rev. Mod. Phys. 57, 1055-1113 (1985).
    • (1985) Rev. Mod. Phys , vol.57 , pp. 1055-1113
    • Tucker, J.R.1    Feldman, M.J.2
  • 56
    • 0001578152 scopus 로고    scopus 로고
    • Scattering theory of photon-assisted electron transport
    • Pedersen, M. H. & Buttiker, M. Scattering theory of photon-assisted electron transport. Phys. Rev. B 58, 12993-13006 (1998).
    • (1998) Phys. Rev. A , vol.58 , pp. 12993-13006
    • Pedersen, M.H.1    Buttiker, M.2
  • 57
    • 33845433526 scopus 로고    scopus 로고
    • Photoassisted scanning tunneling microscopy
    • Grafström, S. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717-1753 (2002).
    • (2002) J. Appl. Phys , vol.91 , pp. 1717-1753
    • Grafström, S.1
  • 58
    • 1842711890 scopus 로고    scopus 로고
    • Photon-assisted transport in semiconductor nanostructures
    • Platero, G. & Aguado, R. Photon-assisted transport in semiconductor nanostructures. Phys. Rep. 395, 1-157 (2004).
    • (2004) Phys. Rep , vol.395 , pp. 1-157
    • Platero, G.1    Aguado, R.2
  • 59
    • 65249109203 scopus 로고    scopus 로고
    • Quantum description of the plasmon resonances of a nanoparticle dimer
    • Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887-891 (2009). A key paper that shows the importance of considering the quantum nature of electrons in modelling nanogap plasmons.
    • (2009) Nano Lett , vol.9 , pp. 887-891
    • Zuloaga, J.1    Prodan, E.2    Nordlander, P.3
  • 60
    • 84887456066 scopus 로고    scopus 로고
    • Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers
    • Teperik, T. V., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt. Express 21, 27306-27325 (2013).
    • (2013) Opt. Express , vol.21 , pp. 27306-27325
    • Teperik, T.V.1    Nordlander, P.2    Aizpurua, J.3    Borisov, A.G.4
  • 61
    • 79951915959 scopus 로고    scopus 로고
    • Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport
    • Song, P., Nordlander, P. & Gao, S. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J. Chem. Phys. 134, 074701 (2011).
    • (2011) J. Chem. Phys , vol.134
    • Song, P.1    Nordlander, P.2    Gao, S.3
  • 62
    • 84858176803 scopus 로고    scopus 로고
    • Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer
    • Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333-1339 (2012).
    • (2012) Nano Lett , vol.12 , pp. 1333-1339
    • Marinica, D.C.1    Kazansky, A.K.2    Nordlander, P.3    Aizpurua, J.4    Borisov, A.G.5
  • 63
    • 84890370340 scopus 로고    scopus 로고
    • Quantum plasmonics: Optical properties of a nanomatryushka
    • Kulkarni, V., Prodan, E. & Nordlander, P. Quantum plasmonics: optical properties of a nanomatryushka. Nano Lett. 13, 5873-5879 (2013).
    • (2013) Nano Lett , vol.13 , pp. 5873-5879
    • Kulkarni, V.1    Prodan, E.2    Nordlander, P.3
  • 64
    • 84862278696 scopus 로고    scopus 로고
    • Bridging quantum and classical plasmonics with a quantum-corrected model
    • Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012). A key paper that points out the importance of quantum tunneling in plasmonic gaps at optical frequencies and developes the QCM model to include the tunnelling effect on nanogap plasmons for large sytems.
    • (2012) Nat. Commun , vol.3 , pp. 825
    • Esteban, R.1    Borisov, A.G.2    Nordlander, P.3    Aizpurua, J.4
  • 65
    • 84930037885 scopus 로고    scopus 로고
    • A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations
    • Esteban, R. et al. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss. 178, 151-183 (2015).
    • (2015) Faraday Discuss , vol.178 , pp. 151-183
    • Esteban, R.1
  • 66
    • 84930222006 scopus 로고    scopus 로고
    • Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation
    • Hohenester, U. Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation. Phys. Rev. B 91, 205436 (2015).
    • (2015) Phys. Rev. A , vol.91
    • Hohenester, U.1
  • 67
    • 84869881418 scopus 로고    scopus 로고
    • Revealing the quantum regime in tunnelling plasmonics
    • Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574-577 (2012). A key paper that experimentally demonstrates the impact of the electron tunnelling on nanogap plasmons via far-field measurements.
    • (2012) Nature , vol.491 , pp. 574-577
    • Savage, K.J.1
  • 68
    • 84873690057 scopus 로고    scopus 로고
    • Observation of quantum tunneling between two plasmonic nanoparticles
    • Scholl, J. A., García-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564-569 (2013). This paper provides direct comparison between experimental measurements and QCM simulations for EELS measurements of well controlled systems.
    • (2013) Nano Lett , vol.13 , pp. 564-569
    • Scholl, J.A.1    García-Etxarri, A.2    Koh, A.L.3    Dionne, J.A.4
  • 69
    • 84989811904 scopus 로고    scopus 로고
    • Evolution of plasmonic metamolecule modes in the Quantum tunneling regime
    • Scholl, J. A. et al. Evolution of plasmonic metamolecule modes in the Quantum tunneling regime. ACS Nano 10, 1346-1354 (2016).
    • (2016) ACS Nano , vol.10 , pp. 1346-1354
    • Scholl, J.A.1
  • 70
    • 84955296399 scopus 로고    scopus 로고
    • Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering
    • Zhu, W. & Crozier, K. B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun. 5, 5228 (2014). This paper experimentally demonstrates the quenching of plasmonic nearfield enhancement due to the electron tunnelling effect.
    • (2014) Nat. Commun , vol.5 , pp. 5228
    • Zhu, W.1    Crozier, K.B.2
  • 71
    • 33846385705 scopus 로고    scopus 로고
    • Optical frequency mixing at coupled gold nanoparticles
    • Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).
    • (2007) Phys. Rev. Lett , vol.98
    • Danckwerts, M.1    Novotny, L.2
  • 72
    • 84914162407 scopus 로고    scopus 로고
    • Control of plasmon emission and dynamics at the transition from classical to quantum coupling
    • Kravtsov, V., Berweger, S., Atkin, J. M. & Raschke, M. B. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett. 14, 5270-5275 (2014).
    • (2014) Nano Lett , vol.14 , pp. 5270-5275
    • Kravtsov, V.1    Berweger, S.2    Atkin, J.M.3    Raschke, M.B.4
  • 73
    • 84909992741 scopus 로고    scopus 로고
    • Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation
    • Hajisalem, G., Nezami, M. S. & Gordon, R. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 14, 6651-6654 (2014).
    • (2014) Nano Lett , vol.14 , pp. 6651-6654
    • Hajisalem, G.1    Nezami, M.S.2    Gordon, R.3
  • 74
    • 4644259280 scopus 로고    scopus 로고
    • Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime
    • Atay, T., Song, J. H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime. Nano Lett. 4, 1627-1631 (2004).
    • (2004) Nano Lett , vol.4 , pp. 1627-1631
    • Atay, T.1    Song, J.H.2    Nurmikko, A.V.3
  • 75
    • 33750349041 scopus 로고    scopus 로고
    • Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers
    • Romero, I., Aizpurua, J., Bryant, G. W. & García de Abajo, F. J. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988-9999 (2006).
    • (2006) Opt. Express , vol.14 , pp. 9988-9999
    • Romero, I.1    Aizpurua, J.2    Bryant, G.W.3    García De Abajo, F.J.4
  • 76
    • 77955586525 scopus 로고    scopus 로고
    • Optical spectroscopy of conductive junctions in plasmonic cavities
    • Pérez-González, O. et al. Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett. 10, 3090-3095 (2010). This paper describes the effect of charge transfer on plasmonic resonances and introduces the concept of charge transfer plasmons.
    • (2010) Nano Lett , vol.10 , pp. 3090-3095
    • Pérez-González, O.1
  • 77
    • 34547217759 scopus 로고
    • Optical constants of the noble metals
    • Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370-4379 (1972).
    • (1972) Phys. Rev. A , vol.6 , pp. 4370-4379
    • Johnson, P.B.1    Christy, R.W.2
  • 79
    • 28344445264 scopus 로고    scopus 로고
    • Optical properties of coupled metallic nanorods for field-enhanced spectroscopy
    • Aizpurua, J., Bryant, G. W., Richter, L. J. & García de Abajo, F. J. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).
    • (2005) Phys. Rev. A , vol.71
    • Aizpurua, J.1    Bryant, G.W.2    Richter, L.J.3    García De Abajo, F.J.4
  • 80
    • 84908251496 scopus 로고    scopus 로고
    • Ab initio nanoplasmonics: The impact of atomic structure
    • Zhang, P., Feist, J., Rubio, A., García-Gonzalez, P. & García-Vidal, F. J. Ab initio nanoplasmonics: The impact of atomic structure. Phys. Rev. B 90, 161407 (R) (2014). This paper investigates the impact of atomic features of metallic nanostructures on nanogap plasmons.
    • (2014) Phys. Rev. A , vol.90
    • Zhang, P.1    Feist, J.2    Rubio, A.3    García-Gonzalez, P.4    García-Vidal, F.J.5
  • 82
    • 84929180022 scopus 로고    scopus 로고
    • Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics
    • Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410-3419 (2015).
    • (2015) Nano Lett , vol.15 , pp. 3410-3419
    • Barbry, M.1
  • 83
    • 84878707608 scopus 로고    scopus 로고
    • Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
    • Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82-86 (2013).
    • (2013) Nature , vol.498 , pp. 82-86
    • Zhang, R.1
  • 84
    • 84872874331 scopus 로고    scopus 로고
    • Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles
    • Wu, L. et al. Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano 7, 707-716 (2013).
    • (2013) ACS Nano , vol.7 , pp. 707-716
    • Wu, L.1
  • 85
    • 84898066449 scopus 로고    scopus 로고
    • Quantum conductivity for metal-insulator-metal nanostructures
    • Haus, J. W., de Ceglia, D., Vincenti, M. A. & Scalora, M. Quantum conductivity for metal-insulator-metal nanostructures. J. Opt. Soc. Am. B 31, 259-269 (2014).
    • (2014) J. Opt. Soc. Am. A , vol.31 , pp. 259-269
    • Haus, J.W.1    De Ceglia, D.2    Vincenti, M.A.3    Scalora, M.4
  • 87
    • 84877023600 scopus 로고    scopus 로고
    • Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS
    • Raza, S. et al. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2, 131-138 (2013).
    • (2013) Nanophotonics , vol.2 , pp. 131-138
    • Raza, S.1
  • 88
    • 6144249539 scopus 로고
    • Size dependent of the optical response of spherical sodium clusters
    • Reiners, T., Ellert, C., Schmidt, M. & Haberland, H. Size dependent of the optical response of spherical sodium clusters. Phys. Rev. Lett. 74, 1558-1561 (1995).
    • (1995) Phys. Rev. Lett , vol.74 , pp. 1558-1561
    • Reiners, T.1    Ellert, C.2    Schmidt, M.3    Haberland, H.4
  • 89
    • 84887108333 scopus 로고    scopus 로고
    • Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations
    • Li, J. H., Hayashi, M. & Guo, G. Y. Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations. Phys. Rev. B 88, 155437 (2013).
    • (2013) Phys. Rev. A , vol.88
    • Li, J.H.1    Hayashi, M.2    Guo, G.Y.3
  • 90
    • 84870899880 scopus 로고    scopus 로고
    • Optical response in subnanometer gaps due to nonlocal response and quantum tunneling
    • Dong, T., Ma, X. & Mittra, R. Optical response in subnanometer gaps due to nonlocal response and quantum tunneling. Appl. Phys. Lett. 101, 233111 (2012).
    • (2012) Appl. Phys. Lett , vol.101
    • Dong, T.1    Ma, X.2    Mittra, R.3
  • 91
    • 27544493706 scopus 로고    scopus 로고
    • Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates
    • Wang, H., Levin, C. S. & Halas, N. J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates. J. Am. Chem. Soc. 127, 14992-14993 (2005).
    • (2005) J. Am. Chem. Soc , vol.127 , pp. 14992-14993
    • Wang, H.1    Levin, C.S.2    Halas, N.J.3
  • 93
    • 77957910560 scopus 로고    scopus 로고
    • Optical rectification and field enhancement in a plasmonic nanogap
    • Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotech. 5, 732-736 (2010). This paper demonstrates optical rectification induced by plasmon-assisted tunnelling current in subnanometre gap structure.
    • (2010) Nat. Nanotech , vol.5 , pp. 732-736
    • Ward, D.R.1    Hüser, F.2    Pauly, F.3    Cuevas, J.C.4    Natelson, D.5
  • 94
    • 80051608965 scopus 로고    scopus 로고
    • Plasmonic nanobilliards: Controlling nanoparticle movement using forces induced by swift electrons
    • Batson, P. E. et al. Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. Nano Lett. 11, 3388-3393 (2011).
    • (2011) Nano Lett , vol.11 , pp. 3388-3393
    • Batson, P.E.1
  • 95
    • 34247898817 scopus 로고    scopus 로고
    • Mapping surface plasmons on a single metallic nanoparticle
    • Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348-353 (2007).
    • (2007) Nat. Phys , vol.3 , pp. 348-353
    • Nelayah, J.1
  • 96
    • 84886951789 scopus 로고    scopus 로고
    • Distance control in-between plasmonic nanoparticles via biological and polymeric spacers
    • Yu, X. et al. Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 8, 480-493 (2013).
    • (2013) Nano Today , vol.8 , pp. 480-493
    • Yu, X.1
  • 97
    • 84896980848 scopus 로고    scopus 로고
    • Quantum plasmon resonances controlled by molecular tunnel junctions
    • Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496-1499 (2014). This paper demonstrates control of nanogap plasmons in molecular junctions.
    • (2014) Science , vol.343 , pp. 1496-1499
    • Tan, S.F.1
  • 98
    • 84947549879 scopus 로고    scopus 로고
    • Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles
    • Jung, H., Cha, H., Lee, D. & Yoon, S. Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles. ACS Nano 9, 12292-12300 (2015).
    • (2015) ACS Nano , vol.9 , pp. 12292-12300
    • Jung, H.1    Cha, H.2    Lee, D.3    Yoon, S.4
  • 99
    • 84908682014 scopus 로고    scopus 로고
    • Adjusting the inter-particle spacing of a nanoparticle array at the sub-nanometre scale by thermal annealing
    • Zhou, J. et al. Adjusting the inter-particle spacing of a nanoparticle array at the sub-nanometre scale by thermal annealing. Chem. Commun. 50, 14547-14549 (2014).
    • (2014) Chem. Commun , vol.50 , pp. 14547-14549
    • Zhou, J.1
  • 100
    • 84883394838 scopus 로고    scopus 로고
    • Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps
    • Kadkhodazadeh, S., Wagner, J. B., Kneipp, H. & Kneipp, K. Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps. Appl. Phys. Lett. 103, 083103 (2013).
    • (2013) Appl. Phys. Lett , vol.103
    • Kadkhodazadeh, S.1    Wagner, J.B.2    Kneipp, H.3    Kneipp, K.4
  • 101
    • 77955373367 scopus 로고    scopus 로고
    • Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy
    • Wustholz, K. L. et al. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903-10910 (2010).
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 10903-10910
    • Wustholz, K.L.1
  • 102
    • 84923346412 scopus 로고    scopus 로고
    • The morphology of narrow gaps modifies the plasmonic response
    • Esteban, R. et al. The morphology of narrow gaps modifies the plasmonic response. ACS Photonics 2, 295-305 (2015).
    • (2015) ACS Photonics , vol.2 , pp. 295-305
    • Esteban, R.1
  • 103
    • 84958793981 scopus 로고    scopus 로고
    • Gap plasmonics of silver nanocube dimers
    • Knebl, D. et al. Gap plasmonics of silver nanocube dimers. Phys. Rev. B 93, 081405(R) (2016).
    • (2016) Phys. Rev. A , vol.93
    • Knebl, D.1
  • 104
    • 77956916407 scopus 로고    scopus 로고
    • Laser-induced scanning tunneling microscopy: Linear excitation of the junction plasmon
    • Lee, J., Perdue, S. M.,Whitmore, D. & Apkarian, V. A. Laser-induced scanning tunneling microscopy: Linear excitation of the junction plasmon. J. Chem. Phys. 133, 104706 (2010).
    • (2010) J. Chem. Phys , vol.133
    • Lee, J.1    Perdue, S.M.2    Whitmore, D.3    Apkarian, V.A.4
  • 105
    • 84862548948 scopus 로고    scopus 로고
    • Molecular optoelectronics: The interaction of molecular conduction junctions with light
    • Galperin, M. & Nitzan, A. Molecular optoelectronics: the interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 14, 9421-9438 (2012).
    • (2012) Phys. Chem. Chem. Phys , vol.14 , pp. 9421-9438
    • Galperin, M.1    Nitzan, A.2
  • 106
    • 84900513525 scopus 로고    scopus 로고
    • Nonlinear photon-assisted tunneling transport in optical gap antennas
    • Stolz, A. et al. Nonlinear photon-assisted tunneling transport in optical gap antennas. Nano Lett. 14, 2330-2338 (2014).
    • (2014) Nano Lett , vol.14 , pp. 2330-2338
    • Stolz, A.1
  • 107
    • 79851491526 scopus 로고    scopus 로고
    • Electrical detection of surface plasmon polaritons by 1G0 gold quantum point contacts
    • Ittah, N. & Selzer, Y. Electrical detection of surface plasmon polaritons by 1G0 gold quantum point contacts. Nano Lett. 11, 529-534 (2011).
    • (2011) Nano Lett , vol.11 , pp. 529-534
    • Ittah, N.1    Selzer, Y.2
  • 108
    • 79960211233 scopus 로고    scopus 로고
    • Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies
    • Arielly, R., Ofarim, A., Noy, G. & Selzer, Y. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett. 11, 2968-2972 (2011).
    • (2011) Nano Lett , vol.11 , pp. 2968-2972
    • Arielly, R.1    Ofarim, A.2    Noy, G.3    Selzer, Y.4
  • 109
    • 84883808144 scopus 로고    scopus 로고
    • Plasmon-induced conductance enhancement in singlemolecule junctions
    • Vadai, M. et al. Plasmon-induced conductance enhancement in singlemolecule junctions. J. Phys. Chem. Lett. 4, 2811-2816 (2013).
    • (2013) J. Phys. Chem. Lett , vol.4 , pp. 2811-2816
    • Vadai, M.1
  • 110
    • 84864675828 scopus 로고    scopus 로고
    • Electrically connected resonant optical antennas
    • Prangsma, J. C. et al. Electrically connected resonant optical antennas. Nano Lett. 12, 3915-3919 (2012).
    • (2012) Nano Lett , vol.12 , pp. 3915-3919
    • Prangsma, J.C.1
  • 112
    • 84920983640 scopus 로고    scopus 로고
    • Nanooptics of molecular-shunted plasmonic nanojunctions
    • Benz, F. et al. Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett. 15, 669-674 (2015). This paper demonstrates the blue-shift of the screened bonding dimer plasmon as the gap conductivity increases.
    • (2015) Nano Lett , vol.15 , pp. 669-674
    • Benz, F.1
  • 113
    • 37249063660 scopus 로고    scopus 로고
    • Electrical conduction through single molecules and self-assembled monolayers
    • Akkerman, H. B. & de Boer, B. Electrical conduction through single molecules and self-assembled monolayers. J. Phys. Condens. Matter 20, 013001 (2008).
    • (2008) J. Phys. Condens. Matter , vol.20
    • Akkerman, H.B.1    De Boer, B.2
  • 114
    • 84906690769 scopus 로고    scopus 로고
    • Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range
    • Cha, H., Yoon, J. H. & Yoon, S. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. ACS Nano 8, 8554-8563 (2014).
    • (2014) ACS Nano , vol.8 , pp. 8554-8563
    • Cha, H.1    Yoon, J.H.2    Yoon, S.3
  • 115
    • 84896972385 scopus 로고    scopus 로고
    • Molecular tuning of quantum plasmon resonances
    • Nordlander, P. Molecular tuning of quantum plasmon resonances. Science 343, 1444-1445 (2014).
    • (2014) Science , vol.343 , pp. 1444-1445
    • Nordlander, P.1
  • 116
    • 79961133191 scopus 로고    scopus 로고
    • Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays
    • Mangold, M. A., Calame, M., Mayor, M. & Holleitner, A. W. Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. J. Am. Chem. Soc. 133, 12185-12191 (2011).
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 12185-12191
    • Mangold, M.A.1    Calame, M.2    Mayor, M.3    Holleitner, A.W.4
  • 117
    • 84870429789 scopus 로고    scopus 로고
    • Surface-enhanced Raman trajectories on a nano-dumbbell: Transition from field to charge transfer plasmons as the spheres fuse
    • Banik, M. et al. Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. ACS Nano 6, 10353-10354 (2012).
    • (2012) ACS Nano , vol.6 , pp. 10353-10354
    • Banik, M.1
  • 118
    • 84876048718 scopus 로고    scopus 로고
    • Raman scattering at plasmonic junctions shorted by conductive molecular bridges
    • El-Khoury, P. Z., Hu, D., Apkarian, V. A. & Hess, W. P. Raman scattering at plasmonic junctions shorted by conductive molecular bridges. Nano Lett. 13, 1858-1861 (2013).
    • (2013) Nano Lett , vol.13 , pp. 1858-1861
    • El-Khoury, P.Z.1    Hu, D.2    Apkarian, V.A.3    Hess, W.P.4
  • 119
    • 84904003511 scopus 로고    scopus 로고
    • Vibronic Raman scattering at the quantum limit of plasmons
    • El-Khoury, P. Z. & Hess, W. P. Vibronic Raman scattering at the quantum limit of plasmons. Nano Lett. 14, 4114-4118 (2014).
    • (2014) Nano Lett , vol.14 , pp. 4114-4118
    • El-Khoury, P.Z.1    Hess, W.P.2
  • 120
    • 84878910081 scopus 로고    scopus 로고
    • Single-molecule junctions beyond electronic transport
    • Aradhya, S. V & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotech. 8, 399-410 (2013).
    • (2013) Nat. Nanotech , vol.8 , pp. 399-410
    • Aradhya, S.V.1    Venkataraman, L.2
  • 121
    • 84863351073 scopus 로고    scopus 로고
    • Electron tomography at 2.4-Ångström resolution
    • Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444-447 (2012).
    • (2012) Nature , vol.483 , pp. 444-447
    • Scott, M.C.1
  • 122
    • 84959373556 scopus 로고    scopus 로고
    • Plasmonic response of metallic nanojunctions driven by single atom motion: Quantum transport revealed in optics
    • Marchesin, F., Koval, P., Barbry, M., Aizpurua, J. & Sanchez-Portal, D. Plasmonic response of metallic nanojunctions driven by single atom motion: quantum transport revealed in optics. ACS Photonics 3, 269-277 (2016).
    • (2016) ACS Photonics , vol.3 , pp. 269-277
    • Marchesin, F.1    Koval, P.2    Barbry, M.3    Aizpurua, J.4    Sanchez-Portal, D.5
  • 123
    • 84949908383 scopus 로고    scopus 로고
    • Quantized evolution of the plasmonic response in a stretched nanorod
    • Rossi, T. P., Zugarramurdi, A., Puska, M. J. & Nieminen, R. M. Quantized evolution of the plasmonic response in a stretched nanorod. Phys. Rev. Lett. 115, 236804 (2015).
    • (2015) Phys. Rev. Lett , vol.115
    • Rossi, T.P.1    Zugarramurdi, A.2    Puska, M.J.3    Nieminen, R.M.4
  • 124
    • 84955470259 scopus 로고    scopus 로고
    • Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of the nanoparticles
    • Le Moal, E. et al. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of the nanoparticles. Phys. Rev. B 93, 035418 (2016).
    • (2016) Phys. Rev. A , vol.93
    • Le Moal, E.1
  • 125
    • 0001876206 scopus 로고
    • Tunneling spectroscopy: Surface geometry and interface potential effects
    • Pitarke, J. M., Flores, F. & Echenique, P. M. Tunneling spectroscopy: surface geometry and interface potential effects. Surf. Sci. 234, 1-16 (1990).
    • (1990) Surf. Sci , vol.234 , pp. 1-16
    • Pitarke, J.M.1    Flores, F.2    Echenique, P.M.3
  • 126
    • 84960536132 scopus 로고    scopus 로고
    • Active Quantum Plasmonics
    • Marinica, D. C. et al. Active Quantum Plasmonics. Sci. Adv. 1, e1501095 (2015).
    • (2015) Sci. Adv , vol.1
    • Marinica, D.C.1
  • 127
    • 79953784239 scopus 로고    scopus 로고
    • Single molecule electronic devices
    • Song, H., Reed, M. A. & Lee, T. Single molecule electronic devices. Adv. Mater. 23, 1583-1608 (2011).
    • (2011) Adv. Mater , vol.23 , pp. 1583-1608
    • Song, H.1    Reed, M.A.2    Lee, T.3
  • 128
    • 80051624908 scopus 로고    scopus 로고
    • Graphene plasmonics: A platform for strong light-matter
    • Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light-matter. Nano Lett. 3370-3377 (2011).
    • (2011) Nano Lett , pp. 3370-3377
    • Koppens, F.H.L.1    Chang, D.E.2    García De Abajo, F.J.3
  • 129
    • 0000748222 scopus 로고
    • Light emission from inelastic electron tunneling
    • Lambe, J. & McCarthy, S. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923-925 (1976).
    • (1976) Phys. Rev. Lett , vol.37 , pp. 923-925
    • Lambe, J.1    McCarthy, S.2
  • 130
    • 84940367507 scopus 로고    scopus 로고
    • Electrically driven optical antennas
    • Kern, J. et al. Electrically driven optical antennas. Nat. Photon 9, 582-586 (2015). This paper shows the generation of plasmon-induced light assisted by the inelastic scattering of tunnelling electrons-the reverse process of plasmonassisted electron tunnelling.
    • (2015) Nat. Photon , vol.9 , pp. 582-586
    • Kern, J.1
  • 131
    • 84978012547 scopus 로고    scopus 로고
    • On chip molecular electronic plasmon sources besed on selfassembled monolayer tunnel junctions
    • Du, W. et al. On chip molecular electronic plasmon sources besed on selfassembled monolayer tunnel junctions. Nat. Photon 10, 274-280 (2016).
    • (2016) Nat. Photon , vol.10 , pp. 274-280
    • Du, W.1
  • 132
    • 84878536432 scopus 로고    scopus 로고
    • Quantum plasmonics
    • Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329-340 (2013).
    • (2013) Nat. Phys , vol.9 , pp. 329-340
    • Tame, M.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.