-
2
-
-
34249651883
-
-
(4),. 10.1038/scientificamerican0407-56
-
H. Atwater, Sci. Am. 296 (4), 56 (2007). 10.1038/scientificamerican0407-56
-
(2007)
Sci. Am.
, vol.296
, pp. 56
-
-
Atwater, H.1
-
3
-
-
77249122018
-
-
1476-1122 10.1038/nmat2630
-
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010). 1476-1122 10.1038/nmat2630
-
(2010)
Nat. Mater.
, vol.9
, pp. 193
-
-
Schuller, J.A.1
Barnard, E.S.2
Cai, W.3
Jun, Y.C.4
White, J.S.5
Brongersma, M.L.6
-
4
-
-
77958070569
-
-
NALEFD 1530-6984 10.1021/nl1032342
-
N. Halas, Nano Lett. 10, 3816 (2010). NALEFD 1530-6984 10.1021/nl1032342
-
(2010)
Nano Lett.
, vol.10
, pp. 3816
-
-
Halas, N.1
-
5
-
-
80054905235
-
-
OPEXFF 1094-4087 10.1364/OE.19.022029
-
M. I. Stockman, Opt. Express 19, 22029 (2011). OPEXFF 1094-4087 10.1364/OE.19.022029
-
(2011)
Opt. Express
, vol.19
, pp. 22029
-
-
Stockman, M.I.1
-
7
-
-
84884262212
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.111.093901
-
Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, Phys. Rev. Lett. 111, 093901 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.093901
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 093901
-
-
Luo, Y.1
Fernandez-Dominguez, A.I.2
Wiener, A.3
Maier, S.A.4
Pendry, J.B.5
-
8
-
-
84899859144
-
-
N. A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, and S. I. Bozhevolnyi, Nat. Commun. 5, 3809 (2014). 10.1038/ncomms4809
-
(2014)
Nat. Commun.
, vol.5
, pp. 3809
-
-
Mortensen, N.A.1
Raza, S.2
Wubs, M.3
Sondergaard, T.4
Bozhevolnyi, S.I.5
-
9
-
-
84930221458
-
-
arXiv:1408.5862
-
G. Toscano, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, arXiv:1408.5862.
-
-
-
Toscano, G.1
Rockstuhl, C.2
Evers, F.3
Xu, H.4
Mortensen, N.A.5
Wubs, M.6
-
10
-
-
84865573876
-
-
SCIEAS 0036-8075 10.1126/science.1224823
-
C. Ciraci, R. T. Hill, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, Science 337, 1072 (2012). SCIEAS 0036-8075 10.1126/science.1224823
-
(2012)
Science
, vol.337
, pp. 1072
-
-
Ciraci, C.1
Hill, R.T.2
Urzhumov, Y.3
Fernandez-Dominguez, A.I.4
Maier, S.A.5
Pendry, J.B.6
Chilkoti, A.7
Smith, D.R.8
-
11
-
-
84862278696
-
-
2041-1723 10.1038/ncomms1806
-
R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun. 3, 825 (2012). 2041-1723 10.1038/ncomms1806
-
(2012)
Nat. Commun.
, vol.3
, pp. 825
-
-
Esteban, R.1
Borisov, A.G.2
Nordlander, P.3
Aizpurua, J.4
-
13
-
-
84930037885
-
-
R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, Faraday Discuss. 178, 151 (2015). 10.1039/C4FD00196F
-
(2015)
Faraday Discuss.
, vol.178
, pp. 151
-
-
Esteban, R.1
Zugarramurdi, A.2
Zhang, P.3
Nordlander, P.4
Garcia-Vidal, F.J.5
Borisov, A.G.6
Aizpurua, J.7
-
14
-
-
84869881418
-
-
NATUAS 0028-0836 10.1038/nature11653
-
K. J. Savage, M. M. Hawkeye, R. Esteband, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Nature (London) 491, 574 (2012). NATUAS 0028-0836 10.1038/nature11653
-
(2012)
Nature (London)
, vol.491
, pp. 574
-
-
Savage, K.J.1
Hawkeye, M.M.2
Esteband, R.3
Borisov, A.G.4
Aizpurua, J.5
Baumberg, J.J.6
-
15
-
-
84896980848
-
-
SCIEAS 0036-8075 10.1126/science.1248797
-
S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Science 343, 1496 (2014). SCIEAS 0036-8075 10.1126/science.1248797
-
(2014)
Science
, vol.343
, pp. 1496
-
-
Tan, S.F.1
Wu, L.2
Yang, J.K.W.3
Bai, P.4
Bosman, M.5
Nijhuis, C.A.6
-
16
-
-
0001876206
-
-
SUSCAS 0039-6028 10.1016/0039-6028(90)90659-V
-
J. M. Pitarke, F. Flores, and P. M. Echenique, Surf. Sci. 234, 1 (1990). SUSCAS 0039-6028 10.1016/0039-6028(90)90659-V
-
(1990)
Surf. Sci.
, vol.234
, pp. 1
-
-
Pitarke, J.M.1
Flores, F.2
Echenique, P.M.3
-
17
-
-
84894021661
-
-
IETPAK 0018-926X 10.1109/TAP.1966.1138693
-
K. S. Yee, IEEE Trans. Antennas Propagat. 14, 302 (1966). IETPAK 0018-926X 10.1109/TAP.1966.1138693
-
(1966)
IEEE Trans. Antennas Propagat.
, vol.14
, pp. 302
-
-
Yee, K.S.1
-
19
-
-
0042653745
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.65.115418
-
F. J. Garcia de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.65.115418
-
(2002)
Phys. Rev. B
, vol.65
, pp. 115418
-
-
Garcia De Abajo, F.J.1
Howie, A.2
-
20
-
-
81455158711
-
-
CPHCBZ 0010-4655 10.1016/j.cpc.2011.09.009
-
U. Hohenester and A. Trügler, Comp. Phys. Commun. 183, 370 (2012). CPHCBZ 0010-4655 10.1016/j.cpc.2011.09.009
-
(2012)
Comp. Phys. Commun.
, vol.183
, pp. 370
-
-
Hohenester, U.1
Trügler, A.2
-
21
-
-
84893774154
-
-
CPHCBZ 0010-4655 10.1016/j.cpc.2013.12.010
-
U. Hohenester, Comp. Phys. Commun. 185, 1177 (2014). CPHCBZ 0010-4655 10.1016/j.cpc.2013.12.010
-
(2014)
Comp. Phys. Commun.
, vol.185
, pp. 1177
-
-
Hohenester, U.1
-
23
-
-
84902264515
-
-
JOBPDE 0740-3224 10.1364/JOSAB.31.000A13
-
J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, J. Opt. Soc. Am. B 31, A13 (2014). JOBPDE 0740-3224 10.1364/JOSAB.31.000A13
-
(2014)
J. Opt. Soc. Am. B
, vol.31
, pp. A13
-
-
Haus, J.W.1
De Ceglia, D.2
Vincenti, M.A.3
Scalora, M.4
-
24
-
-
84925955104
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.114.126803
-
K. Kaasbjerg and A. Nitzan, Phys. Rev. Lett. 114, 126803 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.126803
-
(2015)
Phys. Rev. Lett.
, vol.114
, pp. 126803
-
-
Kaasbjerg, K.1
Nitzan, A.2
-
25
-
-
34547217759
-
-
0556-2805 10.1103/PhysRevB.6.4370
-
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). 0556-2805 10.1103/PhysRevB.6.4370
-
(1972)
Phys. Rev. B
, vol.6
, pp. 4370
-
-
Johnson, P.B.1
Christy, R.W.2
-
26
-
-
84930221459
-
-
For the sphere discretization, we typically use grid sizes with 20 azimuthal angles, 5-10 polar angles for each layer of the tunneling material, and 20 polar angles for the remaining sphere. The ribbons of the onionlike tunnel materials have about 10 discretization points along the nanoparticle connection. We perform refined boundary element integrations using the mnpbem toolbox [20], and checked the convergence of our simulations by systematically increasing the number of discretization points
-
For the sphere discretization, we typically use grid sizes with 20 azimuthal angles, 5-10 polar angles for each layer of the tunneling material, and 20 polar angles for the remaining sphere. The ribbons of the onionlike tunnel materials have about 10 discretization points along the nanoparticle connection. We perform refined boundary element integrations using the mnpbem toolbox [20], and checked the convergence of our simulations by systematically increasing the number of discretization points.
-
-
-
|