메뉴 건너뛰기




Volumn 75, Issue 5, 2016, Pages 2859-2875

Imaging and representation learning of solar radio spectrums for classification

Author keywords

Classification; Deep learning; Feature learning; Solar radio astronomy

Indexed keywords

ASTRONOMY; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS; RADIO ASTRONOMY;

EID: 84959904306     PISSN: 13807501     EISSN: 15737721     Source Type: Journal    
DOI: 10.1007/s11042-015-2528-2     Document Type: Article
Times cited : (22)

References (17)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y (2009) Learning deep architectures for AI. FTML 2(1):1–127
    • (2009) FTML , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 84919825814 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for nonlinear representation
    • Chen M, Weinberger K, Sha F, Bengio Y (2014) Marginalized denoising autoencoders for nonlinear representation. ICML
    • (2014) ICML
    • Chen, M.1    Weinberger, K.2    Sha, F.3    Bengio, Y.4
  • 3
    • 84867129067 scopus 로고    scopus 로고
    • Chen M, Xu Z, Weinberger K, Sha F (2012) Marginalized stacked denoising autoencoders for domain adaptation 29th International Conference on Machine Learning (ICML)
    • Chen M, Xu Z, Weinberger K, Sha F (2012) Marginalized stacked denoising autoencoders for domain adaptation 29th International Conference on Machine Learning (ICML)
  • 5
    • 84931591770 scopus 로고    scopus 로고
    • Three classes of deep learning architectures and their applications: a tutorial survey
    • Deng L (2012) Three classes of deep learning architectures and their applications: a tutorial survey, APSIPA transactions on signal and information processing
    • (2012) APSIPA transactions on signal and information processing
    • Deng, L.1
  • 7
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874
    • (2006) Pattern Recogn Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 8
    • 4043120515 scopus 로고    scopus 로고
    • A new solar broadband radio spectrometer (SBRS) in China
    • Fu Q, Ji H, Qin Z et al (2004) A new solar broadband radio spectrometer (SBRS) in China. Solar Phys 222(1):167–173
    • (2004) Solar Phys , vol.222 , Issue.1 , pp. 167-173
    • Fu, Q.1    Ji, H.2    Qin, Z.3
  • 9
    • 78650474133 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines. Technical report
    • Hinton GE (2010) A practical guide to training restricted boltzmann machines. Technical report, University of Toronto
    • (2010) University of Toronto
    • Hinton, G.E.1
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 13
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Lee H, Largman Y, Pham P, Ng AY (2009) Unsupervised feature learning for audio classification using convolutional deep belief networks. NIPS
    • (2009) NIPS
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.Y.4
  • 16
    • 56449102578 scopus 로고    scopus 로고
    • On the quantitative analysis of deep belief networks
    • Salakhutdinov R, Murray I (2008) On the quantitative analysis of deep belief networks. ICML
    • (2008) ICML
    • Salakhutdinov, R.1    Murray, I.2
  • 17
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • Sohn K, Jung DY, Lee H, Hero A (2011) Efficient learning of sparse, distributed, convolutional feature representations for object recognition. ICCV
    • (2011) ICCV
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.