메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3567-3573

Learning to answer questions from image using convolutional neural network

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; NEURAL NETWORKS;

EID: 85007153677     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (179)

References (35)
  • 3
    • 84890527827 scopus 로고    scopus 로고
    • Improving deep neural networks for LVCSR using rectified linear units and dropout
    • Dahl, G. E.; Sainath, T. N.; and Hinton, G. E. 2013. Improving deep neural networks for LVCSR using rectified linear units and dropout. In ICASSP.
    • (2013) ICASSP
    • Dahl, G.E.1    Sainath, T.N.2    Hinton, G.E.3
  • 9
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • Hu, B.; Lu, Z.; Li, H.; and Chen, Q. 2014. Convolutional neural network architectures for matching natural language sentences. In NIPS.
    • (2014) NIPS
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 10
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • Kalchbrenner, N.; Grefenstette, E.; and Blunsom, P. 2014. A convolutional neural network for modelling sentences. In ACL.
    • (2014) ACL
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 12
    • 84937843643 scopus 로고    scopus 로고
    • Deep fragment embeddings for bidirectional image sentence mapping
    • Karpathy, A.; Joulin, A.; and Li, F.-F. 2014. Deep fragment embeddings for bidirectional image sentence mapping. In NIPS.
    • (2014) NIPS
    • Karpathy, A.1    Joulin, A.2    Li, F.-F.3
  • 13
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Kim, Y. 2014. Convolutional neural networks for sentence classification. In EMNLP.
    • (2014) EMNLP
    • Kim, Y.1
  • 16
    • 84965125568 scopus 로고    scopus 로고
    • Fisher vectors derived from hybrid Gaussian-laplacian mixture models for image annotation
    • Klein, B.; Lev, G.; Sadeh, G.; and Wolf, L. 2015. Fisher vectors derived from hybrid gaussian-laplacian mixture models for image annotation. In CVPR.
    • (2015) CVPR
    • Klein, B.1    Lev, G.2    Sadeh, G.3    Wolf, L.4
  • 18
    • 84973864182 scopus 로고    scopus 로고
    • Multimodal convolutional neural networks for matching image and sentence
    • Ma, L.; Lu, Z.; Shang, L.; and Li, H. 2015. Multimodal convolutional neural networks for matching image and sentence. In ICCV.
    • (2015) ICCV
    • Ma, L.1    Lu, Z.2    Shang, L.3    Li, H.4
  • 19
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • Malinowski, M., and Fritz, M. 2014a. A multi-world approach to question answering about real-world scenes based on uncertain input. In NIPS.
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 27
    • 85162522202 scopus 로고    scopus 로고
    • Im2text: Describing images using 1 million captioned photographs
    • Ordonez, V.; Kulkarni, G.; and Berg, T. L. 2011. Im2text: Describing images using 1 million captioned photographs. In NIPS.
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.L.3
  • 30
    • 84964474107 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • Socher, R.; Karpathy, A.; Le, Q. V.; Manning, C. D.; and Ng, A. Y. 2014. Grounded compositional semantics for finding and describing images with sentences. In TACL.
    • (2014) TACL
    • Socher, R.1    Karpathy, A.2    Le, Q.V.3    Manning, C.D.4    Ng, A.Y.5
  • 33
    • 85146676791 scopus 로고
    • Verb semantics and lexical selection
    • Wu, Z., and Palmer, M. S. 1994. Verb semantics and lexical selection. In ACL.
    • (1994) ACL
    • Wu, Z.1    Palmer, M.S.2
  • 35
    • 84952349307 scopus 로고    scopus 로고
    • Jointly modeling deep video and compositional text to bridge vision and language in a unified framework
    • Xu, R.; Xiong, C.; Chen, W.; and Corso, J. 2015b. Jointly modeling deep video and compositional text to bridge vision and language in a unified framework. In AAAI.
    • (2015) AAAI
    • Xu, R.1    Xiong, C.2    Chen, W.3    Corso, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.