메뉴 건너뛰기




Volumn 67, Issue , 2015, Pages 140-150

Incremental learning for ν-Support Vector Regression

Author keywords

Incremental learning; Online learning; Support vector machine; Support Vector Regression

Indexed keywords

ALGORITHMS; REGRESSION ANALYSIS; SOCIAL NETWORKING (ONLINE); SUPPORT VECTOR MACHINES; VECTORS;

EID: 84929471718     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.03.013     Document Type: Article
Times cited : (450)

References (36)
  • 1
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge University Press, Stanford University, Department of Electrical Engineering
    • Boyd Stephen, Vandenberghe Lieven Convex optimization 2004, Cambridge University Press, Stanford University, Department of Electrical Engineering.
    • (2004) Convex optimization
    • Boyd, S.1    Vandenberghe, L.2
  • 2
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao L.J., Tay Francis E.H. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks 2003, 14(6):1506-1518.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.J.1    Tay, F.E.H.2
  • 5
    • 0038895405 scopus 로고    scopus 로고
    • Training ν-support vector regression: Theory and algorithms
    • Chang Chih-Chung, Lin Chih-Jen Training ν-support vector regression: Theory and algorithms. Neural Computation 2002, 14(8):1959-1977.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1959-1977
    • Chang, C.-C.1    Lin, C.-J.2
  • 9
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman Jerome H. Multivariate adaptive regression splines (with discussion). The Annals of Statistics 1991, 19(1):1-141.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 12
    • 84880921984 scopus 로고    scopus 로고
    • Feasibility and finite convergence analysis for accurate on-line ν-support vector machine
    • Gu B., Sheng V.S. Feasibility and finite convergence analysis for accurate on-line ν-support vector machine. IEEE Transactions on Neural Networks and Learning Systems 2013, 24(8):1304-1315.
    • (2013) IEEE Transactions on Neural Networks and Learning Systems , vol.24 , Issue.8 , pp. 1304-1315
    • Gu, B.1    Sheng, V.S.2
  • 15
    • 34249726632 scopus 로고    scopus 로고
    • Efficient computation and model selection for the support vector regression
    • Gunter Lacey, Zhu Ji Efficient computation and model selection for the support vector regression. Neural Computation 2007, 19(6):1633-1655.
    • (2007) Neural Computation , vol.19 , Issue.6 , pp. 1633-1655
    • Gunter, L.1    Zhu, J.2
  • 19
    • 77954563782 scopus 로고    scopus 로고
    • Multiple incremental decremental learning of support vector machines
    • Karasuyama Masayuki, Takeuchi Ichiro Multiple incremental decremental learning of support vector machines. IEEE Transactions on Neural Networks 2010, 21(7):1048-1059.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.7 , pp. 1048-1059
    • Karasuyama, M.1    Takeuchi, I.2
  • 22
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • Lu Chi-Jie, Lee Tian-Shyug, Chiu Chih-Chou Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems 2009, 47(2):115-125. 0167-9236.
    • (2009) Decision Support Systems , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.-J.1    Lee, T.-S.2    Chiu, C.-C.3
  • 23
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma Junshui, Theiler James, Perkins Simon Accurate on-line support vector regression. Neural Computation 2003, 15(11):2683-2703. 0899-7667.
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3
  • 32
    • 84901632905 scopus 로고    scopus 로고
    • Iteration complexity of feasible descent methods for convex optimization
    • Wang Po-Wei, Lin Chih-Jen Iteration complexity of feasible descent methods for convex optimization. Journal of Machine Learning Research 2014, 15:1523-1548. URL: http://jmlr.org/papers/v15/wang14a.html.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 1523-1548
    • Wang, P.-W.1    Lin, C.-J.2
  • 33
  • 35
    • 84880679854 scopus 로고    scopus 로고
    • Leave-one-out support vector machines
    • Weston, Jason (1999). Leave-one-out support vector machines. In IJCAI(pp. 727-733).
    • (1999) IJCAI , pp. 727-733
    • Weston, J.1
  • 36
    • 84896405853 scopus 로고    scopus 로고
    • Synthetic aperture radar image segmentation by modified student's t-mixture model
    • Zhang Hui, Wu Q.M.Jonathan, Nguyen Thanh Minh, Sun Xingmin Synthetic aperture radar image segmentation by modified student's t-mixture model. IEEE Transaction on Geoscience and Remote Sensing 2014, 52(7):4391-4403.
    • (2014) IEEE Transaction on Geoscience and Remote Sensing , vol.52 , Issue.7 , pp. 4391-4403
    • Zhang, H.1    Wu, Q.M.J.2    Nguyen, T.M.3    Sun, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.