메뉴 건너뛰기




Volumn 20, Issue 10, 2016, Pages 1898-1907

MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation

Author keywords

CD4+ T cells; macrophage polarization; miR 16; PD L1

Indexed keywords

INTERLEUKIN 10; INTERLEUKIN 12; INTERLEUKIN 2; INTERLEUKIN 4; MICRORNA 16; CD274 PROTEIN, MOUSE; CYTOKINE; MICRORNA; MIRN16 MICRORNA, MOUSE; PROGRAMMED DEATH 1 LIGAND 1;

EID: 84971507179     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/jcmm.12882     Document Type: Article
Times cited : (64)

References (56)
  • 1
    • 80355136629 scopus 로고    scopus 로고
    • Studying the mononuclear phagocyte system in the molecular age
    • Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011; 11: 788–98.
    • (2011) Nat Rev Immunol , vol.11 , pp. 788-798
    • Chow, A.1    Brown, B.D.2    Merad, M.3
  • 2
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011; 11: 723–37.
    • (2011) Nat Rev Immunol , vol.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 3
    • 58849167699 scopus 로고    scopus 로고
    • The isolation and characterization of murine macrophages
    • Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2008; Chapter 14: Unit 14 1.
    • (2008) Curr Protoc Immunol , vol.Chapter 14 , pp. 14
    • Zhang, X.1    Goncalves, R.2    Mosser, D.M.3
  • 4
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005; 5: 953–64.
    • (2005) Nat Rev Immunol , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 5
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002; 23: 549–55.
    • (2002) Trends Immunol , vol.23 , pp. 549-555
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3
  • 6
    • 77956976681 scopus 로고    scopus 로고
    • Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
    • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010; 11: 889–96.
    • (2010) Nat Immunol , vol.11 , pp. 889-896
    • Biswas, S.K.1    Mantovani, A.2
  • 7
    • 70350558453 scopus 로고    scopus 로고
    • Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
    • Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009; 29: 13435–44.
    • (2009) J Neurosci , vol.29 , pp. 13435-13444
    • Kigerl, K.A.1    Gensel, J.C.2    Ankeny, D.P.3
  • 8
    • 26644452073 scopus 로고    scopus 로고
    • Macrophage polarization comes of age
    • Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005; 23: 344–6.
    • (2005) Immunity , vol.23 , pp. 344-346
    • Mantovani, A.1    Sica, A.2    Locati, M.3
  • 9
    • 84879097760 scopus 로고    scopus 로고
    • Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions
    • Mantovani A, Locati M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol. 2013; 33: 1478–83.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 1478-1483
    • Mantovani, A.1    Locati, M.2
  • 10
    • 84879562515 scopus 로고    scopus 로고
    • Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection
    • Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 2013; 4: e00264–13.
    • (2013) MBio , vol.4 , pp. e00213-e00264
    • Davis, M.J.1    Tsang, T.M.2    Qiu, Y.3
  • 11
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120: 15–20.
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 12
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19: 92–105.
    • (2009) Genome Res , vol.19 , pp. 92-105
    • Friedman, R.C.1    Farh, K.K.2    Burge, C.B.3
  • 13
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136: 215–33.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 14
    • 84855447249 scopus 로고    scopus 로고
    • MicroRNAs: processing, maturation, target recognition and regulatory functions
    • Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 2011; 3: 83–92.
    • (2011) Mol Cell Pharmacol , vol.3 , pp. 83-92
    • Shukla, G.C.1    Singh, J.2    Barik, S.3
  • 15
    • 77953629046 scopus 로고    scopus 로고
    • Regulation of mRNA translation and stability by microRNAs
    • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010; 79: 351–79.
    • (2010) Annu Rev Biochem , vol.79 , pp. 351-379
    • Fabian, M.R.1    Sonenberg, N.2    Filipowicz, W.3
  • 16
    • 74249084440 scopus 로고    scopus 로고
    • miR-15a and miR-16-1 in cancer: discovery, function and future perspectives
    • Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010; 17: 215–20.
    • (2010) Cell Death Differ , vol.17 , pp. 215-220
    • Aqeilan, R.I.1    Calin, G.A.2    Croce, C.M.3
  • 17
    • 25444520537 scopus 로고    scopus 로고
    • miR-15 and miR-16 induce apoptosis by targeting BCL2
    • Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005; 102: 13944–9.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13944-13949
    • Cimmino, A.1    Calin, G.A.2    Fabbri, M.3
  • 18
    • 55549114664 scopus 로고    scopus 로고
    • The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities
    • Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008; 14: 1271–7.
    • (2008) Nat Med , vol.14 , pp. 1271-1277
    • Bonci, D.1    Coppola, V.2    Musumeci, M.3
  • 19
    • 33947224690 scopus 로고    scopus 로고
    • Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression
    • Linsley PS, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007; 27: 2240–52.
    • (2007) Mol Cell Biol , vol.27 , pp. 2240-2252
    • Linsley, P.S.1    Schelter, J.2    Burchard, J.3
  • 20
    • 52649088391 scopus 로고    scopus 로고
    • miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes
    • Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 2008; 36: 5391–404.
    • (2008) Nucleic Acids Res , vol.36 , pp. 5391-5404
    • Liu, Q.1    Fu, H.2    Sun, F.3
  • 21
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
    • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 402–8.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 22
    • 84906908839 scopus 로고    scopus 로고
    • Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets
    • Lee YJ, Moon YH, Hyung KE, et al. Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets. Advances in Bioscience and Biotechnology. 2013; 4: 19–29.
    • (2013) Advances in Bioscience and Biotechnology , vol.4 , pp. 19-29
    • Lee, Y.J.1    Moon, Y.H.2    Hyung, K.E.3
  • 23
    • 84879108078 scopus 로고    scopus 로고
    • Transcriptional control of macrophage polarization
    • Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013; 33: 1135–44.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 1135-1144
    • Tugal, D.1    Liao, X.2    Jain, M.K.3
  • 24
    • 0028234529 scopus 로고
    • Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins
    • Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994; 264: 1415–21.
    • (1994) Science , vol.264 , pp. 1415-1421
    • Darnell, J.E.1    Kerr, I.M.2    Stark, G.R.3
  • 25
    • 4344660420 scopus 로고    scopus 로고
    • NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity
    • Fujioka S, Niu J, Schmidt C, et al. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 2004; 24: 7806–19.
    • (2004) Mol Cell Biol , vol.24 , pp. 7806-7819
    • Fujioka, S.1    Niu, J.2    Schmidt, C.3
  • 26
    • 0029069145 scopus 로고
    • Transcriptional responses to polypeptide ligands: the JAK-STAT pathway
    • Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995; 64: 621–51.
    • (1995) Annu Rev Biochem , vol.64 , pp. 621-651
    • Schindler, C.1    Darnell, J.E.2
  • 27
    • 0036222241 scopus 로고    scopus 로고
    • TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages
    • Toshchakov V, Jones BW, Perera PY, et al. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol. 2002; 3: 392–8.
    • (2002) Nat Immunol , vol.3 , pp. 392-398
    • Toshchakov, V.1    Jones, B.W.2    Perera, P.Y.3
  • 28
    • 15044345461 scopus 로고    scopus 로고
    • Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors
    • Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005; 434: 243–9.
    • (2005) Nature , vol.434 , pp. 243-249
    • Takaoka, A.1    Yanai, H.2    Kondo, S.3
  • 29
    • 79956305398 scopus 로고    scopus 로고
    • The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock
    • Mahabeleshwar GH, Kawanami D, Sharma N, et al. The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity. 2011; 34: 715–28.
    • (2011) Immunity , vol.34 , pp. 715-728
    • Mahabeleshwar, G.H.1    Kawanami, D.2    Sharma, N.3
  • 30
    • 77955426821 scopus 로고    scopus 로고
    • Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming
    • El Chartouni C, Schwarzfischer L, Rehli M. Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology. 2010; 215: 821–5.
    • (2010) Immunobiology , vol.215 , pp. 821-825
    • El Chartouni, C.1    Schwarzfischer, L.2    Rehli, M.3
  • 31
    • 0031886864 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation
    • Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998; 391: 79–82.
    • (1998) Nature , vol.391 , pp. 79-82
    • Ricote, M.1    Li, A.C.2    Willson, T.M.3
  • 32
    • 33846026712 scopus 로고    scopus 로고
    • Obesity induces a phenotypic switch in adipose tissue macrophage polarization
    • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117: 175–84.
    • (2007) J Clin Invest , vol.117 , pp. 175-184
    • Lumeng, C.N.1    Bodzin, J.L.2    Saltiel, A.R.3
  • 33
    • 79960021457 scopus 로고    scopus 로고
    • Kruppel-like factor 4 regulates macrophage polarization
    • Liao X, Sharma N, Kapadia F, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011; 121: 2736–49.
    • (2011) J Clin Invest , vol.121 , pp. 2736-2749
    • Liao, X.1    Sharma, N.2    Kapadia, F.3
  • 34
    • 45549103746 scopus 로고    scopus 로고
    • microRNAs and the immune response
    • Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008; 29: 343–51.
    • (2008) Trends Immunol , vol.29 , pp. 343-351
    • Lindsay, M.A.1
  • 35
    • 84872975552 scopus 로고    scopus 로고
    • MicroRNAs in immune response and macrophage polarization
    • Liu G, Abraham E. MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol. 2013; 33: 170–7.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 170-177
    • Liu, G.1    Abraham, E.2
  • 36
    • 84862150859 scopus 로고    scopus 로고
    • A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation
    • Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation. 2012; 125: 2892–903.
    • (2012) Circulation , vol.125 , pp. 2892-2903
    • Zhuang, G.1    Meng, C.2    Guo, X.3
  • 37
    • 70350759666 scopus 로고    scopus 로고
    • MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta
    • He M, Xu Z, Ding T, et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol. 2009; 6: 343–52.
    • (2009) Cell Mol Immunol , vol.6 , pp. 343-352
    • He, M.1    Xu, Z.2    Ding, T.3
  • 38
    • 78651247933 scopus 로고    scopus 로고
    • MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway
    • Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 2011; 17: 64–70.
    • (2011) Nat Med , vol.17 , pp. 64-70
    • Ponomarev, E.D.1    Veremeyko, T.2    Barteneva, N.3
  • 39
    • 82355186454 scopus 로고    scopus 로고
    • miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level
    • Gao SM, Xing CY, Chen CQ, et al. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res. 2011; 30: 110.
    • (2011) J Exp Clin Cancer Res , vol.30 , pp. 110
    • Gao, S.M.1    Xing, C.Y.2    Chen, C.Q.3
  • 40
    • 84856195948 scopus 로고    scopus 로고
    • miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene
    • Zhou R, Li X, Hu G, et al. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene. PLoS ONE. 2012; 7: e30772.
    • (2012) PLoS ONE , vol.7
    • Zhou, R.1    Li, X.2    Hu, G.3
  • 41
    • 77956896318 scopus 로고    scopus 로고
    • Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway
    • Zhang X, Wan G, Mlotshwa S, et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010; 70: 7176–86.
    • (2010) Cancer Res , vol.70 , pp. 7176-7186
    • Zhang, X.1    Wan, G.2    Mlotshwa, S.3
  • 42
    • 84892923276 scopus 로고    scopus 로고
    • p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer
    • Shi L, Jackstadt R, Siemens H, et al. p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res. 2014; 74: 532–42.
    • (2014) Cancer Res , vol.74 , pp. 532-542
    • Shi, L.1    Jackstadt, R.2    Siemens, H.3
  • 43
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41: 14–20.
    • (2014) Immunity , vol.41 , pp. 14-20
    • Murray, P.J.1    Allen, J.E.2    Biswas, S.K.3
  • 44
    • 84934271896 scopus 로고    scopus 로고
    • Anatomy of a discovery: m1 and m2 macrophages
    • Mills CD. Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 2015; 6: 212.
    • (2015) Front Immunol , vol.6 , pp. 212
    • Mills, C.D.1
  • 45
    • 0022640843 scopus 로고
    • Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins
    • Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986; 136: 2348–57.
    • (1986) J Immunol , vol.136 , pp. 2348-2357
    • Mosmann, T.R.1    Cherwinski, H.2    Bond, M.W.3
  • 46
    • 36248984364 scopus 로고    scopus 로고
    • Expansion of B cells is necessary for the induction of T-cell tolerance elicited through the anterior chamber of the eye
    • Ashour HM, Niederkorn JY. Expansion of B cells is necessary for the induction of T-cell tolerance elicited through the anterior chamber of the eye. Int Arch Allergy Immunol. 2007; 144: 343–6.
    • (2007) Int Arch Allergy Immunol , vol.144 , pp. 343-346
    • Ashour, H.M.1    Niederkorn, J.Y.2
  • 47
    • 36248951156 scopus 로고    scopus 로고
    • The role of B cells in the induction of peripheral T cell tolerance
    • Ashour HM, Seif TM. The role of B cells in the induction of peripheral T cell tolerance. J Leukoc Biol. 2007; 82: 1033–9.
    • (2007) J Leukoc Biol , vol.82 , pp. 1033-1039
    • Ashour, H.M.1    Seif, T.M.2
  • 48
    • 73649116987 scopus 로고    scopus 로고
    • The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia
    • Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010; 17: 28–40.
    • (2010) Cancer Cell , vol.17 , pp. 28-40
    • Klein, U.1    Lia, M.2    Crespo, M.3
  • 49
    • 77949270198 scopus 로고    scopus 로고
    • Conservation of miR-15a/16-1 and miR-15b/16-2 clusters
    • Yue J, Tigyi G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm Genome. 2010; 21: 88–94.
    • (2010) Mamm Genome , vol.21 , pp. 88-94
    • Yue, J.1    Tigyi, G.2
  • 50
    • 34447646310 scopus 로고    scopus 로고
    • Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses
    • Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007; 27: 111–22.
    • (2007) Immunity , vol.27 , pp. 111-122
    • Butte, M.J.1    Keir, M.E.2    Phamduy, T.B.3
  • 51
    • 73949088551 scopus 로고    scopus 로고
    • PD-L1 regulates the development, maintenance, and function of induced regulatory T cells
    • Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009; 206: 3015–29.
    • (2009) J Exp Med , vol.206 , pp. 3015-3029
    • Francisco, L.M.1    Salinas, V.H.2    Brown, K.E.3
  • 52
    • 84905567935 scopus 로고    scopus 로고
    • Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice
    • Yao A, Liu F, Chen K, et al. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics. 2014; 11: 636–50.
    • (2014) Neurotherapeutics , vol.11 , pp. 636-650
    • Yao, A.1    Liu, F.2    Chen, K.3
  • 53
    • 67449110979 scopus 로고    scopus 로고
    • Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1
    • Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009; 206: 1327–37.
    • (2009) J Exp Med , vol.206 , pp. 1327-1337
    • Kuang, D.M.1    Zhao, Q.2    Peng, C.3
  • 54
    • 61549122071 scopus 로고    scopus 로고
    • Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma
    • Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009; 15: 971–9.
    • (2009) Clin Cancer Res , vol.15 , pp. 971-979
    • Gao, Q.1    Wang, X.Y.2    Qiu, S.J.3
  • 55
    • 84923251407 scopus 로고    scopus 로고
    • Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression
    • Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014; 5: 5241.
    • (2014) Nat Commun , vol.5 , pp. 5241
    • Chen, L.1    Gibbons, D.L.2    Goswami, S.3
  • 56
    • 63149085789 scopus 로고    scopus 로고
    • MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes
    • Gong AY, Zhou R, Hu G, et al. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol. 2009; 182: 1325–33.
    • (2009) J Immunol , vol.182 , pp. 1325-1333
    • Gong, A.Y.1    Zhou, R.2    Hu, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.