-
1
-
-
80355136629
-
Studying the mononuclear phagocyte system in the molecular age
-
Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011; 11: 788–98.
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 788-798
-
-
Chow, A.1
Brown, B.D.2
Merad, M.3
-
2
-
-
80355131976
-
Protective and pathogenic functions of macrophage subsets
-
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011; 11: 723–37.
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 723-737
-
-
Murray, P.J.1
Wynn, T.A.2
-
3
-
-
58849167699
-
The isolation and characterization of murine macrophages
-
Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2008; Chapter 14: Unit 14 1.
-
(2008)
Curr Protoc Immunol
, vol.Chapter 14
, pp. 14
-
-
Zhang, X.1
Goncalves, R.2
Mosser, D.M.3
-
4
-
-
28544446111
-
Monocyte and macrophage heterogeneity
-
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005; 5: 953–64.
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 953-964
-
-
Gordon, S.1
Taylor, P.R.2
-
5
-
-
0036839143
-
Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
-
Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002; 23: 549–55.
-
(2002)
Trends Immunol
, vol.23
, pp. 549-555
-
-
Mantovani, A.1
Sozzani, S.2
Locati, M.3
-
6
-
-
77956976681
-
Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
-
Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010; 11: 889–96.
-
(2010)
Nat Immunol
, vol.11
, pp. 889-896
-
-
Biswas, S.K.1
Mantovani, A.2
-
7
-
-
70350558453
-
Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord
-
Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009; 29: 13435–44.
-
(2009)
J Neurosci
, vol.29
, pp. 13435-13444
-
-
Kigerl, K.A.1
Gensel, J.C.2
Ankeny, D.P.3
-
8
-
-
26644452073
-
Macrophage polarization comes of age
-
Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005; 23: 344–6.
-
(2005)
Immunity
, vol.23
, pp. 344-346
-
-
Mantovani, A.1
Sica, A.2
Locati, M.3
-
9
-
-
84879097760
-
Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions
-
Mantovani A, Locati M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol. 2013; 33: 1478–83.
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 1478-1483
-
-
Mantovani, A.1
Locati, M.2
-
10
-
-
84879562515
-
Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection
-
Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 2013; 4: e00264–13.
-
(2013)
MBio
, vol.4
, pp. e00213-e00264
-
-
Davis, M.J.1
Tsang, T.M.2
Qiu, Y.3
-
11
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120: 15–20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
12
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19: 92–105.
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.2
Burge, C.B.3
-
13
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136: 215–33.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
14
-
-
84855447249
-
MicroRNAs: processing, maturation, target recognition and regulatory functions
-
Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 2011; 3: 83–92.
-
(2011)
Mol Cell Pharmacol
, vol.3
, pp. 83-92
-
-
Shukla, G.C.1
Singh, J.2
Barik, S.3
-
15
-
-
77953629046
-
Regulation of mRNA translation and stability by microRNAs
-
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010; 79: 351–79.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 351-379
-
-
Fabian, M.R.1
Sonenberg, N.2
Filipowicz, W.3
-
16
-
-
74249084440
-
miR-15a and miR-16-1 in cancer: discovery, function and future perspectives
-
Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010; 17: 215–20.
-
(2010)
Cell Death Differ
, vol.17
, pp. 215-220
-
-
Aqeilan, R.I.1
Calin, G.A.2
Croce, C.M.3
-
17
-
-
25444520537
-
miR-15 and miR-16 induce apoptosis by targeting BCL2
-
Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005; 102: 13944–9.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 13944-13949
-
-
Cimmino, A.1
Calin, G.A.2
Fabbri, M.3
-
18
-
-
55549114664
-
The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities
-
Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008; 14: 1271–7.
-
(2008)
Nat Med
, vol.14
, pp. 1271-1277
-
-
Bonci, D.1
Coppola, V.2
Musumeci, M.3
-
19
-
-
33947224690
-
Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression
-
Linsley PS, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007; 27: 2240–52.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 2240-2252
-
-
Linsley, P.S.1
Schelter, J.2
Burchard, J.3
-
20
-
-
52649088391
-
miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes
-
Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 2008; 36: 5391–404.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 5391-5404
-
-
Liu, Q.1
Fu, H.2
Sun, F.3
-
21
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 402–8.
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
22
-
-
84906908839
-
Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets
-
Lee YJ, Moon YH, Hyung KE, et al. Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets. Advances in Bioscience and Biotechnology. 2013; 4: 19–29.
-
(2013)
Advances in Bioscience and Biotechnology
, vol.4
, pp. 19-29
-
-
Lee, Y.J.1
Moon, Y.H.2
Hyung, K.E.3
-
24
-
-
0028234529
-
Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins
-
Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994; 264: 1415–21.
-
(1994)
Science
, vol.264
, pp. 1415-1421
-
-
Darnell, J.E.1
Kerr, I.M.2
Stark, G.R.3
-
25
-
-
4344660420
-
NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity
-
Fujioka S, Niu J, Schmidt C, et al. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 2004; 24: 7806–19.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 7806-7819
-
-
Fujioka, S.1
Niu, J.2
Schmidt, C.3
-
26
-
-
0029069145
-
Transcriptional responses to polypeptide ligands: the JAK-STAT pathway
-
Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995; 64: 621–51.
-
(1995)
Annu Rev Biochem
, vol.64
, pp. 621-651
-
-
Schindler, C.1
Darnell, J.E.2
-
27
-
-
0036222241
-
TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages
-
Toshchakov V, Jones BW, Perera PY, et al. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol. 2002; 3: 392–8.
-
(2002)
Nat Immunol
, vol.3
, pp. 392-398
-
-
Toshchakov, V.1
Jones, B.W.2
Perera, P.Y.3
-
28
-
-
15044345461
-
Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors
-
Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005; 434: 243–9.
-
(2005)
Nature
, vol.434
, pp. 243-249
-
-
Takaoka, A.1
Yanai, H.2
Kondo, S.3
-
29
-
-
79956305398
-
The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock
-
Mahabeleshwar GH, Kawanami D, Sharma N, et al. The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity. 2011; 34: 715–28.
-
(2011)
Immunity
, vol.34
, pp. 715-728
-
-
Mahabeleshwar, G.H.1
Kawanami, D.2
Sharma, N.3
-
30
-
-
77955426821
-
Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming
-
El Chartouni C, Schwarzfischer L, Rehli M. Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology. 2010; 215: 821–5.
-
(2010)
Immunobiology
, vol.215
, pp. 821-825
-
-
El Chartouni, C.1
Schwarzfischer, L.2
Rehli, M.3
-
31
-
-
0031886864
-
The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation
-
Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998; 391: 79–82.
-
(1998)
Nature
, vol.391
, pp. 79-82
-
-
Ricote, M.1
Li, A.C.2
Willson, T.M.3
-
32
-
-
33846026712
-
Obesity induces a phenotypic switch in adipose tissue macrophage polarization
-
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117: 175–84.
-
(2007)
J Clin Invest
, vol.117
, pp. 175-184
-
-
Lumeng, C.N.1
Bodzin, J.L.2
Saltiel, A.R.3
-
33
-
-
79960021457
-
Kruppel-like factor 4 regulates macrophage polarization
-
Liao X, Sharma N, Kapadia F, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011; 121: 2736–49.
-
(2011)
J Clin Invest
, vol.121
, pp. 2736-2749
-
-
Liao, X.1
Sharma, N.2
Kapadia, F.3
-
34
-
-
45549103746
-
microRNAs and the immune response
-
Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008; 29: 343–51.
-
(2008)
Trends Immunol
, vol.29
, pp. 343-351
-
-
Lindsay, M.A.1
-
35
-
-
84872975552
-
MicroRNAs in immune response and macrophage polarization
-
Liu G, Abraham E. MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol. 2013; 33: 170–7.
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 170-177
-
-
Liu, G.1
Abraham, E.2
-
36
-
-
84862150859
-
A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation
-
Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation. 2012; 125: 2892–903.
-
(2012)
Circulation
, vol.125
, pp. 2892-2903
-
-
Zhuang, G.1
Meng, C.2
Guo, X.3
-
37
-
-
70350759666
-
MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta
-
He M, Xu Z, Ding T, et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta. Cell Mol Immunol. 2009; 6: 343–52.
-
(2009)
Cell Mol Immunol
, vol.6
, pp. 343-352
-
-
He, M.1
Xu, Z.2
Ding, T.3
-
38
-
-
78651247933
-
MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway
-
Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 2011; 17: 64–70.
-
(2011)
Nat Med
, vol.17
, pp. 64-70
-
-
Ponomarev, E.D.1
Veremeyko, T.2
Barteneva, N.3
-
39
-
-
82355186454
-
miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level
-
Gao SM, Xing CY, Chen CQ, et al. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res. 2011; 30: 110.
-
(2011)
J Exp Clin Cancer Res
, vol.30
, pp. 110
-
-
Gao, S.M.1
Xing, C.Y.2
Chen, C.Q.3
-
40
-
-
84856195948
-
miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene
-
Zhou R, Li X, Hu G, et al. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene. PLoS ONE. 2012; 7: e30772.
-
(2012)
PLoS ONE
, vol.7
-
-
Zhou, R.1
Li, X.2
Hu, G.3
-
41
-
-
77956896318
-
Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway
-
Zhang X, Wan G, Mlotshwa S, et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010; 70: 7176–86.
-
(2010)
Cancer Res
, vol.70
, pp. 7176-7186
-
-
Zhang, X.1
Wan, G.2
Mlotshwa, S.3
-
42
-
-
84892923276
-
p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer
-
Shi L, Jackstadt R, Siemens H, et al. p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res. 2014; 74: 532–42.
-
(2014)
Cancer Res
, vol.74
, pp. 532-542
-
-
Shi, L.1
Jackstadt, R.2
Siemens, H.3
-
43
-
-
84904394690
-
Macrophage activation and polarization: nomenclature and experimental guidelines
-
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41: 14–20.
-
(2014)
Immunity
, vol.41
, pp. 14-20
-
-
Murray, P.J.1
Allen, J.E.2
Biswas, S.K.3
-
44
-
-
84934271896
-
Anatomy of a discovery: m1 and m2 macrophages
-
Mills CD. Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 2015; 6: 212.
-
(2015)
Front Immunol
, vol.6
, pp. 212
-
-
Mills, C.D.1
-
45
-
-
0022640843
-
Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins
-
Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986; 136: 2348–57.
-
(1986)
J Immunol
, vol.136
, pp. 2348-2357
-
-
Mosmann, T.R.1
Cherwinski, H.2
Bond, M.W.3
-
46
-
-
36248984364
-
Expansion of B cells is necessary for the induction of T-cell tolerance elicited through the anterior chamber of the eye
-
Ashour HM, Niederkorn JY. Expansion of B cells is necessary for the induction of T-cell tolerance elicited through the anterior chamber of the eye. Int Arch Allergy Immunol. 2007; 144: 343–6.
-
(2007)
Int Arch Allergy Immunol
, vol.144
, pp. 343-346
-
-
Ashour, H.M.1
Niederkorn, J.Y.2
-
47
-
-
36248951156
-
The role of B cells in the induction of peripheral T cell tolerance
-
Ashour HM, Seif TM. The role of B cells in the induction of peripheral T cell tolerance. J Leukoc Biol. 2007; 82: 1033–9.
-
(2007)
J Leukoc Biol
, vol.82
, pp. 1033-1039
-
-
Ashour, H.M.1
Seif, T.M.2
-
48
-
-
73649116987
-
The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia
-
Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010; 17: 28–40.
-
(2010)
Cancer Cell
, vol.17
, pp. 28-40
-
-
Klein, U.1
Lia, M.2
Crespo, M.3
-
49
-
-
77949270198
-
Conservation of miR-15a/16-1 and miR-15b/16-2 clusters
-
Yue J, Tigyi G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm Genome. 2010; 21: 88–94.
-
(2010)
Mamm Genome
, vol.21
, pp. 88-94
-
-
Yue, J.1
Tigyi, G.2
-
50
-
-
34447646310
-
Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses
-
Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007; 27: 111–22.
-
(2007)
Immunity
, vol.27
, pp. 111-122
-
-
Butte, M.J.1
Keir, M.E.2
Phamduy, T.B.3
-
51
-
-
73949088551
-
PD-L1 regulates the development, maintenance, and function of induced regulatory T cells
-
Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009; 206: 3015–29.
-
(2009)
J Exp Med
, vol.206
, pp. 3015-3029
-
-
Francisco, L.M.1
Salinas, V.H.2
Brown, K.E.3
-
52
-
-
84905567935
-
Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice
-
Yao A, Liu F, Chen K, et al. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics. 2014; 11: 636–50.
-
(2014)
Neurotherapeutics
, vol.11
, pp. 636-650
-
-
Yao, A.1
Liu, F.2
Chen, K.3
-
53
-
-
67449110979
-
Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1
-
Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009; 206: 1327–37.
-
(2009)
J Exp Med
, vol.206
, pp. 1327-1337
-
-
Kuang, D.M.1
Zhao, Q.2
Peng, C.3
-
54
-
-
61549122071
-
Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma
-
Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009; 15: 971–9.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 971-979
-
-
Gao, Q.1
Wang, X.Y.2
Qiu, S.J.3
-
55
-
-
84923251407
-
Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression
-
Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014; 5: 5241.
-
(2014)
Nat Commun
, vol.5
, pp. 5241
-
-
Chen, L.1
Gibbons, D.L.2
Goswami, S.3
-
56
-
-
63149085789
-
MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes
-
Gong AY, Zhou R, Hu G, et al. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol. 2009; 182: 1325–33.
-
(2009)
J Immunol
, vol.182
, pp. 1325-1333
-
-
Gong, A.Y.1
Zhou, R.2
Hu, G.3
|