메뉴 건너뛰기




Volumn 31, Issue 10, 2016, Pages 1877-1887

Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells

Author keywords

BONE LOSS; ERYTHROPOIETIN; OSTEOBLAST; OSTEOCLAST; PHD2

Indexed keywords

ACID PHOSPHATASE TARTRATE RESISTANT ISOENZYME; CARBOXY TERMINAL TELOPEPTIDE; COLLAGEN; ERYTHROPOIETIN; HYPOXIA INDUCIBLE FACTOR PROLINE DIOXYGENASE; HYPOXIA INDUCIBLE FACTOR PROLINE DIOXYGENASE 2; PROCOLLAGEN TYPE 1 AMINOPROPEPTIDE; UNCLASSIFIED DRUG; EGLN1 PROTEIN, MOUSE;

EID: 84970005909     PISSN: 08840431     EISSN: 15234681     Source Type: Journal    
DOI: 10.1002/jbmr.2857     Document Type: Article
Times cited : (55)

References (42)
  • 1
    • 84872185847 scopus 로고    scopus 로고
    • Signaling pathways affecting skeletal health
    • Marie PJ. Signaling pathways affecting skeletal health. Curr Osteoporos Rep. 2012; 10(3):190–8.
    • (2012) Curr Osteoporos Rep , vol.10 , Issue.3 , pp. 190-198
    • Marie, P.J.1
  • 2
    • 84884947186 scopus 로고    scopus 로고
    • Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration
    • Dirckx N, Van Hul M, Maes C. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today. 2013; 99(3):170–91.
    • (2013) Birth Defects Res C Embryo Today , vol.99 , Issue.3 , pp. 170-191
    • Dirckx, N.1    Van Hul, M.2    Maes, C.3
  • 3
    • 79959412176 scopus 로고    scopus 로고
    • Osteoblasts in osteoporosis: past, emerging, and future anabolic targets
    • Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011; 165(1):1–10.
    • (2011) Eur J Endocrinol , vol.165 , Issue.1 , pp. 1-10
    • Marie, P.J.1    Kassem, M.2
  • 4
    • 79953751008 scopus 로고    scopus 로고
    • Osteoporosis: now and the future
    • Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011; 377(9773):1276–87.
    • (2011) Lancet , vol.377 , Issue.9773 , pp. 1276-1287
    • Rachner, T.D.1    Khosla, S.2    Hofbauer, L.C.3
  • 5
    • 84868577455 scopus 로고    scopus 로고
    • HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development
    • Bentovim L, Amarilio R, Zelzer E. HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development. 2012; 139(23):4473–83.
    • (2012) Development , vol.139 , Issue.23 , pp. 4473-4483
    • Bentovim, L.1    Amarilio, R.2    Zelzer, E.3
  • 6
    • 79959908260 scopus 로고    scopus 로고
    • Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2a
    • van Patot MCT, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2a. High Alt Med Biol. 2011; 12(2):157–67.
    • (2011) High Alt Med Biol , vol.12 , Issue.2 , pp. 157-167
    • van Patot, M.C.T.1    Gassmann, M.2
  • 7
    • 0345491599 scopus 로고    scopus 로고
    • Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation
    • Hu C-J., Wang L-Y., Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003; 23(24):9361–74.
    • (2003) Mol Cell Biol , vol.23 , Issue.24 , pp. 9361-9374
    • Hu, C.-J.1    Wang, L.-Y.2    Chodosh, L.A.3    Keith, B.4    Simon, M.C.5
  • 8
    • 33748187417 scopus 로고    scopus 로고
    • Regulating cellular oxygen sensing by hydroxylation
    • Fandrey J, Gorr TA, Gassmann M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 2006; 71(4):642–51.
    • (2006) Cardiovasc Res , vol.71 , Issue.4 , pp. 642-651
    • Fandrey, J.1    Gorr, T.A.2    Gassmann, M.3
  • 9
    • 79751479288 scopus 로고    scopus 로고
    • The HIF pathway and erythrocytosis
    • Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2010; 6:165–92.
    • (2010) Annu Rev Pathol , vol.6 , pp. 165-192
    • Lee, F.S.1    Percy, M.J.2
  • 10
    • 17044378251 scopus 로고    scopus 로고
    • HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner
    • Scortegagna M, Ding K, Zhang Q, et al. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood. 2005; 105(8):3133–40.
    • (2005) Blood , vol.105 , Issue.8 , pp. 3133-3140
    • Scortegagna, M.1    Ding, K.2    Zhang, Q.3
  • 11
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010; 7(3):391–402.
    • (2010) Cell Stem Cell , vol.7 , Issue.3 , pp. 391-402
    • Takubo, K.1    Goda, N.2    Yamada, W.3
  • 12
    • 84884182871 scopus 로고    scopus 로고
    • HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress
    • Singh RP, Franke K, Kalucka J, et al. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress. Blood. 2013; 121(26):5158–66.
    • (2013) Blood , vol.121 , Issue.26 , pp. 5158-5166
    • Singh, R.P.1    Franke, K.2    Kalucka, J.3
  • 13
    • 84874351409 scopus 로고    scopus 로고
    • HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis
    • Franke K, Kalucka J, Mamlouk S, et al. HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis. Blood. 2013; 121(8):1436–45.
    • (2013) Blood , vol.121 , Issue.8 , pp. 1436-1445
    • Franke, K.1    Kalucka, J.2    Mamlouk, S.3
  • 14
    • 84957867141 scopus 로고    scopus 로고
    • Adaptation of iron requirement to hypoxic conditions at high altitude
    • Dec 15;
    • Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985). 2015 Dec 15; 119(12):1432–40.
    • (2015) J Appl Physiol (1985) , vol.119 , Issue.12 , pp. 1432-1440
    • Gassmann, M.1    Muckenthaler, M.U.2
  • 16
    • 79951829343 scopus 로고    scopus 로고
    • Hypoxia and inflammation
    • Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011; 364(7):656–65.
    • (2011) N Engl J Med , vol.364 , Issue.7 , pp. 656-665
    • Eltzschig, H.K.1    Carmeliet, P.2
  • 17
    • 84868104099 scopus 로고    scopus 로고
    • Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis
    • Laitala A, Aro E, Walkinshaw G, et al. Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis. Blood. 2012; 120(16):3336–44.
    • (2012) Blood , vol.120 , Issue.16 , pp. 3336-3344
    • Laitala, A.1    Aro, E.2    Walkinshaw, G.3
  • 18
    • 84876134353 scopus 로고    scopus 로고
    • Hypoxia-inducible factors as key regulators of tumor inflammation
    • Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer. 2013; 132(12):2721–9.
    • (2013) Int J Cancer , vol.132 , Issue.12 , pp. 2721-2729
    • Mamlouk, S.1    Wielockx, B.2
  • 19
    • 84866635520 scopus 로고    scopus 로고
    • Hypoxia-mediated regulation of stem cell fate
    • Singh RP, Franke K, Wielockx B. Hypoxia-mediated regulation of stem cell fate. High Alt Med Biol. 2012; 13(3):162–8.
    • (2012) High Alt Med Biol , vol.13 , Issue.3 , pp. 162-168
    • Singh, R.P.1    Franke, K.2    Wielockx, B.3
  • 20
    • 84887130699 scopus 로고    scopus 로고
    • Erythrocytosis: the HIF pathway in control
    • Franke K, Gassmann M, Wielockx B. Erythrocytosis: the HIF pathway in control. Blood. 2013; 122(7):1122–8.
    • (2013) Blood , vol.122 , Issue.7 , pp. 1122-1128
    • Franke, K.1    Gassmann, M.2    Wielockx, B.3
  • 21
    • 33750976389 scopus 로고    scopus 로고
    • Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2
    • Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006; 26(22):8336–46.
    • (2006) Mol Cell Biol , vol.26 , Issue.22 , pp. 8336-8346
    • Takeda, K.1    Ho, V.C.2    Takeda, H.3    Duan, L.J.4    Nagy, A.5    Fong, G.H.6
  • 22
    • 12944265473 scopus 로고    scopus 로고
    • Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin
    • Ruschitzka FT, Wenger RH, Stallmach T, et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci U S A 2000; 97(21):11609–13.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , Issue.21 , pp. 11609-11613
    • Ruschitzka, F.T.1    Wenger, R.H.2    Stallmach, T.3
  • 23
    • 33748768971 scopus 로고    scopus 로고
    • Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
    • Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006; 133(16):3231–44.
    • (2006) Development , vol.133 , Issue.16 , pp. 3231-3244
    • Rodda, S.J.1    McMahon, A.P.2
  • 24
    • 13444267759 scopus 로고    scopus 로고
    • Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing
    • Stadtfeld M, Graf T. Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development. 2005; 132(1):203–13.
    • (2005) Development , vol.132 , Issue.1 , pp. 203-213
    • Stadtfeld, M.1    Graf, T.2
  • 25
    • 84867559755 scopus 로고    scopus 로고
    • Selective glucocorticoid receptor modulation maintains bone mineral density in mice
    • Thiele S, Ziegler N, Tsourdi E, et al. Selective glucocorticoid receptor modulation maintains bone mineral density in mice. J Bone Miner Res. 2012; 27(11):2242–50.
    • (2012) J Bone Miner Res , vol.27 , Issue.11 , pp. 2242-2250
    • Thiele, S.1    Ziegler, N.2    Tsourdi, E.3
  • 26
    • 84884695029 scopus 로고    scopus 로고
    • Effects of the selective glucocorticoid receptor modulator compound A on bone metabolism and inflammation in male mice with collagen-induced arthritis
    • Rauner M, Thiele S, Sinningen K, et al. Effects of the selective glucocorticoid receptor modulator compound A on bone metabolism and inflammation in male mice with collagen-induced arthritis. Endocrinology. 2013; 154(10):3719–28.
    • (2013) Endocrinology , vol.154 , Issue.10 , pp. 3719-3728
    • Rauner, M.1    Thiele, S.2    Sinningen, K.3
  • 27
    • 84900009594 scopus 로고    scopus 로고
    • Cathepsin S controls adipocytic and osteoblastic differentiation, bone turnover, and bone microarchitecture
    • Rauner M, Foger-Samwald U, Kurz MF, et al. Cathepsin S controls adipocytic and osteoblastic differentiation, bone turnover, and bone microarchitecture. Bone. 2014; 64:281–7.
    • (2014) Bone , vol.64 , pp. 281-287
    • Rauner, M.1    Foger-Samwald, U.2    Kurz, M.F.3
  • 28
    • 84957941184 scopus 로고    scopus 로고
    • HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival
    • Stegen S, van Gastel N, Eelen G, et al. HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 2016; 23(2):265–79.
    • (2016) Cell Metab , vol.23 , Issue.2 , pp. 265-279
    • Stegen, S.1    van Gastel, N.2    Eelen, G.3
  • 29
    • 84859207905 scopus 로고    scopus 로고
    • The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO
    • Rankin E, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012; 149(1):63–74.
    • (2012) Cell , vol.149 , Issue.1 , pp. 63-74
    • Rankin, E.1    Wu, C.2    Khatri, R.3
  • 30
    • 77955569142 scopus 로고    scopus 로고
    • Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
    • Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19(2):329–44.
    • (2010) Dev Cell , vol.19 , Issue.2 , pp. 329-344
    • Maes, C.1    Kobayashi, T.2    Selig, M.K.3
  • 31
    • 84898621357 scopus 로고    scopus 로고
    • Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice
    • Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One. 2014; 9(1):e85161.
    • (2014) PLoS One , vol.9 , Issue.1
    • Chen, J.1    Shi, Y.2    Regan, J.3    Karuppaiah, K.4    Ornitz, D.M.5    Long, F.6
  • 32
    • 79957586600 scopus 로고    scopus 로고
    • Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment
    • Singbrant S, Russell MR, Jovic T, et al. Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood. 2011; 117(21):5631–42.
    • (2011) Blood , vol.117 , Issue.21 , pp. 5631-5642
    • Singbrant, S.1    Russell, M.R.2    Jovic, T.3
  • 33
    • 84932629963 scopus 로고    scopus 로고
    • Erythropoietin directly stimulates osteoclast precursors and induces bone loss
    • Hiram-Bab S, Liron T, Deshet-Unger N, et al. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB.J. 2015; 29(5):1890–900.
    • (2015) FASEB.J , vol.29 , Issue.5 , pp. 1890-1900
    • Hiram-Bab, S.1    Liron, T.2    Deshet-Unger, N.3
  • 34
    • 77956509034 scopus 로고    scopus 로고
    • Erythropoietin couples hematopoiesis with bone formation
    • Shiozawa Y, Jung Y, Ziegler AM, et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One. 2010; 5(5):e10853.
    • (2010) PLoS One , vol.5 , Issue.5
    • Shiozawa, Y.1    Jung, Y.2    Ziegler, A.M.3
  • 35
    • 84882741604 scopus 로고    scopus 로고
    • Epo and non-hematopoietic cells: what do we know
    • Ogunshola OO, Bogdanova AY. Epo and non-hematopoietic cells: what do we know? Methods Mol Biol. 2013; 982:13–41.
    • (2013) Methods Mol Biol , vol.982 , pp. 13-41
    • Ogunshola, O.O.1    Bogdanova, A.Y.2
  • 36
    • 84890130054 scopus 로고    scopus 로고
    • Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development
    • Mamlouk S, Kalucka J, Singh RP, et al. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development. Int J Cancer. 2014; 134(4):849–58.
    • (2014) Int J Cancer , vol.134 , Issue.4 , pp. 849-858
    • Mamlouk, S.1    Kalucka, J.2    Singh, R.P.3
  • 37
    • 84907664624 scopus 로고    scopus 로고
    • Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development
    • Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res. 2014; 29(10):2276–86.
    • (2014) J Bone Miner Res , vol.29 , Issue.10 , pp. 2276-2286
    • Cheng, S.1    Xing, W.2    Pourteymoor, S.3    Mohan, S.4
  • 39
    • 84927776927 scopus 로고    scopus 로고
    • Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin
    • Wu C, Rankin EB, Castellini L, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 2015; 29(8):817–31.
    • (2015) Genes Dev , vol.29 , Issue.8 , pp. 817-831
    • Wu, C.1    Rankin, E.B.2    Castellini, L.3
  • 40
    • 34249913494 scopus 로고    scopus 로고
    • The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development
    • Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007; 117(6):1616–26.
    • (2007) J Clin Invest , vol.117 , Issue.6 , pp. 1616-1626
    • Wang, Y.1    Wan, C.2    Deng, L.3
  • 41
    • 38649128127 scopus 로고    scopus 로고
    • Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration
    • Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A. 2008; 105(2):686–91.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.2 , pp. 686-691
    • Wan, C.1    Gilbert, S.R.2    Wang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.