-
1
-
-
84872185847
-
Signaling pathways affecting skeletal health
-
Marie PJ. Signaling pathways affecting skeletal health. Curr Osteoporos Rep. 2012; 10(3):190–8.
-
(2012)
Curr Osteoporos Rep
, vol.10
, Issue.3
, pp. 190-198
-
-
Marie, P.J.1
-
2
-
-
84884947186
-
Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration
-
Dirckx N, Van Hul M, Maes C. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today. 2013; 99(3):170–91.
-
(2013)
Birth Defects Res C Embryo Today
, vol.99
, Issue.3
, pp. 170-191
-
-
Dirckx, N.1
Van Hul, M.2
Maes, C.3
-
3
-
-
79959412176
-
Osteoblasts in osteoporosis: past, emerging, and future anabolic targets
-
Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011; 165(1):1–10.
-
(2011)
Eur J Endocrinol
, vol.165
, Issue.1
, pp. 1-10
-
-
Marie, P.J.1
Kassem, M.2
-
4
-
-
79953751008
-
Osteoporosis: now and the future
-
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011; 377(9773):1276–87.
-
(2011)
Lancet
, vol.377
, Issue.9773
, pp. 1276-1287
-
-
Rachner, T.D.1
Khosla, S.2
Hofbauer, L.C.3
-
5
-
-
84868577455
-
HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development
-
Bentovim L, Amarilio R, Zelzer E. HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development. 2012; 139(23):4473–83.
-
(2012)
Development
, vol.139
, Issue.23
, pp. 4473-4483
-
-
Bentovim, L.1
Amarilio, R.2
Zelzer, E.3
-
6
-
-
79959908260
-
Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2a
-
van Patot MCT, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2a. High Alt Med Biol. 2011; 12(2):157–67.
-
(2011)
High Alt Med Biol
, vol.12
, Issue.2
, pp. 157-167
-
-
van Patot, M.C.T.1
Gassmann, M.2
-
7
-
-
0345491599
-
Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation
-
Hu C-J., Wang L-Y., Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003; 23(24):9361–74.
-
(2003)
Mol Cell Biol
, vol.23
, Issue.24
, pp. 9361-9374
-
-
Hu, C.-J.1
Wang, L.-Y.2
Chodosh, L.A.3
Keith, B.4
Simon, M.C.5
-
8
-
-
33748187417
-
Regulating cellular oxygen sensing by hydroxylation
-
Fandrey J, Gorr TA, Gassmann M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 2006; 71(4):642–51.
-
(2006)
Cardiovasc Res
, vol.71
, Issue.4
, pp. 642-651
-
-
Fandrey, J.1
Gorr, T.A.2
Gassmann, M.3
-
9
-
-
79751479288
-
The HIF pathway and erythrocytosis
-
Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2010; 6:165–92.
-
(2010)
Annu Rev Pathol
, vol.6
, pp. 165-192
-
-
Lee, F.S.1
Percy, M.J.2
-
10
-
-
17044378251
-
HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner
-
Scortegagna M, Ding K, Zhang Q, et al. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood. 2005; 105(8):3133–40.
-
(2005)
Blood
, vol.105
, Issue.8
, pp. 3133-3140
-
-
Scortegagna, M.1
Ding, K.2
Zhang, Q.3
-
11
-
-
77956217067
-
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
-
Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010; 7(3):391–402.
-
(2010)
Cell Stem Cell
, vol.7
, Issue.3
, pp. 391-402
-
-
Takubo, K.1
Goda, N.2
Yamada, W.3
-
12
-
-
84884182871
-
HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress
-
Singh RP, Franke K, Kalucka J, et al. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress. Blood. 2013; 121(26):5158–66.
-
(2013)
Blood
, vol.121
, Issue.26
, pp. 5158-5166
-
-
Singh, R.P.1
Franke, K.2
Kalucka, J.3
-
13
-
-
84874351409
-
HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis
-
Franke K, Kalucka J, Mamlouk S, et al. HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis. Blood. 2013; 121(8):1436–45.
-
(2013)
Blood
, vol.121
, Issue.8
, pp. 1436-1445
-
-
Franke, K.1
Kalucka, J.2
Mamlouk, S.3
-
14
-
-
84957867141
-
Adaptation of iron requirement to hypoxic conditions at high altitude
-
Dec 15;
-
Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985). 2015 Dec 15; 119(12):1432–40.
-
(2015)
J Appl Physiol (1985)
, vol.119
, Issue.12
, pp. 1432-1440
-
-
Gassmann, M.1
Muckenthaler, M.U.2
-
15
-
-
0035347260
-
Induction of HIF-1alpha in response to hypoxia is instantaneous
-
Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 2001; 15(7):1312–4.
-
(2001)
FASEB J
, vol.15
, Issue.7
, pp. 1312-1314
-
-
Jewell, U.R.1
Kvietikova, I.2
Scheid, A.3
Bauer, C.4
Wenger, R.H.5
Gassmann, M.6
-
16
-
-
79951829343
-
Hypoxia and inflammation
-
Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011; 364(7):656–65.
-
(2011)
N Engl J Med
, vol.364
, Issue.7
, pp. 656-665
-
-
Eltzschig, H.K.1
Carmeliet, P.2
-
17
-
-
84868104099
-
Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis
-
Laitala A, Aro E, Walkinshaw G, et al. Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis. Blood. 2012; 120(16):3336–44.
-
(2012)
Blood
, vol.120
, Issue.16
, pp. 3336-3344
-
-
Laitala, A.1
Aro, E.2
Walkinshaw, G.3
-
18
-
-
84876134353
-
Hypoxia-inducible factors as key regulators of tumor inflammation
-
Mamlouk S, Wielockx B. Hypoxia-inducible factors as key regulators of tumor inflammation. Int J Cancer. 2013; 132(12):2721–9.
-
(2013)
Int J Cancer
, vol.132
, Issue.12
, pp. 2721-2729
-
-
Mamlouk, S.1
Wielockx, B.2
-
19
-
-
84866635520
-
Hypoxia-mediated regulation of stem cell fate
-
Singh RP, Franke K, Wielockx B. Hypoxia-mediated regulation of stem cell fate. High Alt Med Biol. 2012; 13(3):162–8.
-
(2012)
High Alt Med Biol
, vol.13
, Issue.3
, pp. 162-168
-
-
Singh, R.P.1
Franke, K.2
Wielockx, B.3
-
20
-
-
84887130699
-
Erythrocytosis: the HIF pathway in control
-
Franke K, Gassmann M, Wielockx B. Erythrocytosis: the HIF pathway in control. Blood. 2013; 122(7):1122–8.
-
(2013)
Blood
, vol.122
, Issue.7
, pp. 1122-1128
-
-
Franke, K.1
Gassmann, M.2
Wielockx, B.3
-
21
-
-
33750976389
-
Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2
-
Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006; 26(22):8336–46.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.22
, pp. 8336-8346
-
-
Takeda, K.1
Ho, V.C.2
Takeda, H.3
Duan, L.J.4
Nagy, A.5
Fong, G.H.6
-
22
-
-
12944265473
-
Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin
-
Ruschitzka FT, Wenger RH, Stallmach T, et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci U S A 2000; 97(21):11609–13.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.21
, pp. 11609-11613
-
-
Ruschitzka, F.T.1
Wenger, R.H.2
Stallmach, T.3
-
23
-
-
33748768971
-
Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
-
Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006; 133(16):3231–44.
-
(2006)
Development
, vol.133
, Issue.16
, pp. 3231-3244
-
-
Rodda, S.J.1
McMahon, A.P.2
-
24
-
-
13444267759
-
Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing
-
Stadtfeld M, Graf T. Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development. 2005; 132(1):203–13.
-
(2005)
Development
, vol.132
, Issue.1
, pp. 203-213
-
-
Stadtfeld, M.1
Graf, T.2
-
25
-
-
84867559755
-
Selective glucocorticoid receptor modulation maintains bone mineral density in mice
-
Thiele S, Ziegler N, Tsourdi E, et al. Selective glucocorticoid receptor modulation maintains bone mineral density in mice. J Bone Miner Res. 2012; 27(11):2242–50.
-
(2012)
J Bone Miner Res
, vol.27
, Issue.11
, pp. 2242-2250
-
-
Thiele, S.1
Ziegler, N.2
Tsourdi, E.3
-
26
-
-
84884695029
-
Effects of the selective glucocorticoid receptor modulator compound A on bone metabolism and inflammation in male mice with collagen-induced arthritis
-
Rauner M, Thiele S, Sinningen K, et al. Effects of the selective glucocorticoid receptor modulator compound A on bone metabolism and inflammation in male mice with collagen-induced arthritis. Endocrinology. 2013; 154(10):3719–28.
-
(2013)
Endocrinology
, vol.154
, Issue.10
, pp. 3719-3728
-
-
Rauner, M.1
Thiele, S.2
Sinningen, K.3
-
27
-
-
84900009594
-
Cathepsin S controls adipocytic and osteoblastic differentiation, bone turnover, and bone microarchitecture
-
Rauner M, Foger-Samwald U, Kurz MF, et al. Cathepsin S controls adipocytic and osteoblastic differentiation, bone turnover, and bone microarchitecture. Bone. 2014; 64:281–7.
-
(2014)
Bone
, vol.64
, pp. 281-287
-
-
Rauner, M.1
Foger-Samwald, U.2
Kurz, M.F.3
-
28
-
-
84957941184
-
HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival
-
Stegen S, van Gastel N, Eelen G, et al. HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 2016; 23(2):265–79.
-
(2016)
Cell Metab
, vol.23
, Issue.2
, pp. 265-279
-
-
Stegen, S.1
van Gastel, N.2
Eelen, G.3
-
29
-
-
84859207905
-
The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO
-
Rankin E, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012; 149(1):63–74.
-
(2012)
Cell
, vol.149
, Issue.1
, pp. 63-74
-
-
Rankin, E.1
Wu, C.2
Khatri, R.3
-
30
-
-
77955569142
-
Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
-
Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19(2):329–44.
-
(2010)
Dev Cell
, vol.19
, Issue.2
, pp. 329-344
-
-
Maes, C.1
Kobayashi, T.2
Selig, M.K.3
-
31
-
-
84898621357
-
Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice
-
Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One. 2014; 9(1):e85161.
-
(2014)
PLoS One
, vol.9
, Issue.1
-
-
Chen, J.1
Shi, Y.2
Regan, J.3
Karuppaiah, K.4
Ornitz, D.M.5
Long, F.6
-
32
-
-
79957586600
-
Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment
-
Singbrant S, Russell MR, Jovic T, et al. Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood. 2011; 117(21):5631–42.
-
(2011)
Blood
, vol.117
, Issue.21
, pp. 5631-5642
-
-
Singbrant, S.1
Russell, M.R.2
Jovic, T.3
-
33
-
-
84932629963
-
Erythropoietin directly stimulates osteoclast precursors and induces bone loss
-
Hiram-Bab S, Liron T, Deshet-Unger N, et al. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB.J. 2015; 29(5):1890–900.
-
(2015)
FASEB.J
, vol.29
, Issue.5
, pp. 1890-1900
-
-
Hiram-Bab, S.1
Liron, T.2
Deshet-Unger, N.3
-
34
-
-
77956509034
-
Erythropoietin couples hematopoiesis with bone formation
-
Shiozawa Y, Jung Y, Ziegler AM, et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One. 2010; 5(5):e10853.
-
(2010)
PLoS One
, vol.5
, Issue.5
-
-
Shiozawa, Y.1
Jung, Y.2
Ziegler, A.M.3
-
35
-
-
84882741604
-
Epo and non-hematopoietic cells: what do we know
-
Ogunshola OO, Bogdanova AY. Epo and non-hematopoietic cells: what do we know? Methods Mol Biol. 2013; 982:13–41.
-
(2013)
Methods Mol Biol
, vol.982
, pp. 13-41
-
-
Ogunshola, O.O.1
Bogdanova, A.Y.2
-
36
-
-
84890130054
-
Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development
-
Mamlouk S, Kalucka J, Singh RP, et al. Loss of prolyl hydroxylase-2 in myeloid cells and T-lymphocytes impairs tumor development. Int J Cancer. 2014; 134(4):849–58.
-
(2014)
Int J Cancer
, vol.134
, Issue.4
, pp. 849-858
-
-
Mamlouk, S.1
Kalucka, J.2
Singh, R.P.3
-
37
-
-
84907664624
-
Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development
-
Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res. 2014; 29(10):2276–86.
-
(2014)
J Bone Miner Res
, vol.29
, Issue.10
, pp. 2276-2286
-
-
Cheng, S.1
Xing, W.2
Pourteymoor, S.3
Mohan, S.4
-
38
-
-
1942454869
-
Cre recombinase-mediated gene targeting of mesenchymal cells
-
Florin L, Alter H, Grone HJ, Szabowski A, Schutz G, Angel P. Cre recombinase-mediated gene targeting of mesenchymal cells. Genesis. 2004; 38(3):139–44.
-
(2004)
Genesis
, vol.38
, Issue.3
, pp. 139-144
-
-
Florin, L.1
Alter, H.2
Grone, H.J.3
Szabowski, A.4
Schutz, G.5
Angel, P.6
-
39
-
-
84927776927
-
Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin
-
Wu C, Rankin EB, Castellini L, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 2015; 29(8):817–31.
-
(2015)
Genes Dev
, vol.29
, Issue.8
, pp. 817-831
-
-
Wu, C.1
Rankin, E.B.2
Castellini, L.3
-
40
-
-
34249913494
-
The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development
-
Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007; 117(6):1616–26.
-
(2007)
J Clin Invest
, vol.117
, Issue.6
, pp. 1616-1626
-
-
Wang, Y.1
Wan, C.2
Deng, L.3
-
41
-
-
38649128127
-
Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration
-
Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A. 2008; 105(2):686–91.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.2
, pp. 686-691
-
-
Wan, C.1
Gilbert, S.R.2
Wang, Y.3
-
42
-
-
0014605193
-
Bone changes in polycythaemia vera and myelosclerosis
-
Roberts BE, Woods CG, Miles DW, Paterson CR. Bone changes in polycythaemia vera and myelosclerosis. J Clin Pathol. 1969; 22(6):696–700.
-
(1969)
J Clin Pathol
, vol.22
, Issue.6
, pp. 696-700
-
-
Roberts, B.E.1
Woods, C.G.2
Miles, D.W.3
Paterson, C.R.4
|