-
2
-
-
84858778756
-
Mixed membership stochastic block-models
-
Airoldi, Edoardo M, Blei, David M, Fienberg, Stephen E, and Xing, Eric P. Mixed membership stochastic block-models. In Advances in Neural Information Processing Systems, pp. 33-40, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 33-40
-
-
Airoldi, E.M.1
Blei, D.M.2
Fienberg, S.E.3
Xing, E.P.4
-
4
-
-
84937949501
-
-
revisited. arXiv preprint arXiv: 1405.7085
-
Bassily, Raef, Smith, Adam, and Thakurta, Abhradeep. Private empirical risk minimization, revisited. arXiv preprint arXiv: 1405.7085, 2014.
-
(2014)
Private Empirical Risk Minimization
-
-
Bassily, R.1
Smith, A.2
Thakurta, A.3
-
5
-
-
84894624083
-
Bounds on the sample complexity for private learning and private data release
-
Beimel, Amos, Brenner, Hai, Kasiviswanathan, Shiva Prasad, and Nissim, Kobbi. Bounds on the sample complexity for private learning and private data release. Machine learning, 94(3):401-437, 2014.
-
(2014)
Machine Learning
, vol.94
, Issue.3
, pp. 401-437
-
-
Beimel, A.1
Brenner, H.2
Kasiviswanathan, S.P.3
Nissim, K.4
-
6
-
-
0035514587
-
Predictability, complexity, and learning
-
Bialek, William, Nemenman, Ilya, and Tishby, Naftali. Predictability, complexity, and learning. Neural computation, 13(11):2409-2463, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.11
, pp. 2409-2463
-
-
Bialek, W.1
Nemenman, I.2
Tishby, N.3
-
7
-
-
0141607824
-
Latent dirichlet allocation
-
Blei, David M, Ng, Andrew Y, and Jordan, Michael I. Latent dirichlet allocation, the Journal of machine Learning research, 3:993-1022, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
8
-
-
79955858775
-
Differentially private empirical risk minimization
-
Chaudhuri, Kamalika, Monteleoni, Claire, and Sarwate, Anand D. Differentially private empirical risk minimization. The Journal of Machine Learning Research, 12: 1069-1109, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 1069-1109
-
-
Chaudhuri, K.1
Monteleoni, C.2
Sarwate, A.D.3
-
10
-
-
84881226124
-
Bayesian asymptotics with misspecified models
-
De Blasi, Pierpaolo and Walker, Stephen G. Bayesian asymptotics with misspecified models. Statistica Sinica, 23:169-187, 2013.
-
(2013)
Statistica Sinica
, vol.23
, pp. 169-187
-
-
De Blasi, P.1
Walker, S.G.2
-
11
-
-
84910080986
-
Robust and private Bayesian inference
-
Springer
-
Dimitrakakis, Christos, Nelson, Blaine, Mitrokotsa, Aikaterini, and Rubinstein, Benjamin IP. Robust and private bayesian inference. In Algorithmic Learning Theory, pp. 291-305. Springer, 2014.
-
(2014)
Algorithmic Learning Theory
, pp. 291-305
-
-
Dimitrakakis, C.1
Nelson, B.2
Mitrokotsa, A.3
Rubinstein, B.I.P.4
-
12
-
-
84937959155
-
Bayesian sampling using stochastic gradient thermostats
-
Ding, Nan, Fang, Youhan, Babbush, Ryan, Chen, Changyou, Skeel, Robert D, and Neven, Hartmut. Bayesian sampling using stochastic gradient thermostats. In Advances in Neural Information Processing Systems, pp. 3203-3211, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3203-3211
-
-
Ding, N.1
Fang, Y.2
Babbush, R.3
Chen, C.4
Skeel, R.D.5
Neven, H.6
-
15
-
-
84905991151
-
The algorithmic foundations of differential privacy
-
Dwork, Cynthia and Roth, Aaron. The algorithmic foundations of differential privacy. Theoretical Computer Science, 9(3-4):211-407, 2013.
-
(2013)
Theoretical Computer Science
, vol.9
, Issue.3-4
, pp. 211-407
-
-
Dwork, C.1
Roth, A.2
-
16
-
-
33745556605
-
Calibrating noise to sensitivity in private data analysis
-
Springer
-
Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In Theory of cryptography, pp. 265-284. Springer, 2006.
-
(2006)
Theory of Cryptography
, pp. 265-284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
17
-
-
33745155436
-
A Bayesian hierarchical model for learning natural scene categories
-
IEEE
-
Fei-Fei, Li and Perona, Pietro. A bayesian hierarchical model for learning natural scene categories. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pp. 524-531. IEEE, 2005.
-
(2005)
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
, vol.2
, pp. 524-531
-
-
Fei-Fei, L.1
Perona, P.2
-
18
-
-
0004012196
-
-
Taylor & Francis
-
Gelman, Andrew, Carlin, John B, and Stern, Hal S. Bayesian data analysis, volume 2. Taylor & Francis, 2014.
-
(2014)
Bayesian Data Analysis
, vol.2
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
-
19
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images
-
Geman, Stuart and Geman, Donald. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):721-741, 1984.
-
(1984)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
22
-
-
77956890234
-
Monte carlo sampling methods using markov chains and their applications
-
Hastings, W Keith. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1): 97-109, 1970.
-
(1970)
Biometrika
, vol.57
, Issue.1
, pp. 97-109
-
-
Hastings, W.K.1
-
23
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann, Thomas, Schölkopf, Bernhard, and Smola, Alexander J. Kernel methods in machine learning. The annals of statistics, pp. 1171-1220, 2008.
-
(2008)
The Annals of Statistics
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
25
-
-
84904192038
-
Private convex empirical risk minimization and high-dimensional regression
-
Kifer, Daniel, Smith, Adam, and Thakurta, Abhradeep. Private convex empirical risk minimization and high-dimensional regression. Journal of Machine Learning Research, 1:41, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.1
, pp. 41
-
-
Kifer, D.1
Smith, A.2
Thakurta, A.3
-
26
-
-
84875400086
-
The bernstein-von-mises theorem under misspecification
-
Kleijn, BJK, van der Vaart, AW, et al. The bernstein-von-mises theorem under misspecification. Electronic Journal of Statistics, 6:354-381, 2012.
-
(2012)
Electronic Journal of Statistics
, vol.6
, pp. 354-381
-
-
Kleijn, B.1
Van Der-Vaart, A.W.2
-
32
-
-
84970023450
-
Lecture notes on Bayesian nonparametrics
-
Orbanz, Peter. Lecture notes on bayesian nonparametrics. Journal of Mathematical Psychology, 56:1-12, 2012.
-
(2012)
Journal of Mathematical Psychology
, vol.56
, pp. 1-12
-
-
Orbanz, P.1
-
33
-
-
38049027134
-
-
Academic press
-
Penny, William D, Friston, Karl J, Ashburner, John T, Kiebel, Stefan J, and Nichols, Thomas E. Statistical parametric mapping: the analysis of functional brain images: the analysis of functional brain images. Academic press, 2011.
-
(2011)
Statistical Parametric Mapping: The Analysis of Functional Brain Images: The Analysis of Functional Brain Images
-
-
Penny, W.D.1
Friston, K.J.2
Ashburner, J.T.3
Kiebel, S.J.4
Nichols, T.E.5
-
35
-
-
0024610919
-
A tutorial on hidden markov models and selected applications in speech recognition
-
Rabiner, Lawrence. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.1
-
38
-
-
84923618271
-
Minorization conditions and convergence rates for markov chain monte carlo
-
Rosenthal, Jeffrey S. Minorization conditions and convergence rates for markov chain monte carlo. Journal of the American Statistical Association, 90(430):558-566, 1995.
-
(1995)
Journal of the American Statistical Association
, vol.90
, Issue.430
, pp. 558-566
-
-
Rosenthal, J.S.1
-
45
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, Martin J and Jordan, Michael I. Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning, 1(1-2): 1-305, 2008.
-
(2008)
Foundations and Trends® in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
|