-
1
-
-
33745556605
-
Calibrating noise to sensitivity in private data analysis
-
March
-
C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in private data analysis," in Theory of Cryptography, vol. 3876, March 2006, pp. 265-284.
-
(2006)
Theory of Cryptography
, vol.3876
, pp. 265-284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
2
-
-
84867112697
-
-
ArXiV, Tech. Rep. arXiv:1109. 5647 [cs. LG]
-
A. Rakhlin, O. Shamir, and K. Sridharan, "Making gradient descent optimal for strongly convex stochastic optimization," ArXiV, Tech. Rep. arXiv:1109. 5647 [cs. LG], 2012.
-
(2012)
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
-
-
Rakhlin, A.1
Shamir, O.2
Sridharan, K.3
-
3
-
-
79952748054
-
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
-
S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, Series B, vol. 127, no. 1, pp. 3-30, 2011.
-
(2011)
Mathematical Programming, Series B
, vol.127
, Issue.1
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
4
-
-
85162498265
-
Better mini-batch algorithms via accelerated gradient methods
-
A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, "Better mini-batch algorithms via accelerated gradient methods," in Adv. NIPS 24, 2011, pp. 1647-1655.
-
(2011)
Adv. NIPS
, vol.24
, pp. 1647-1655
-
-
Cotter, A.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
5
-
-
84857527621
-
Optimal distributed online prediction using mini-batches
-
O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, "Optimal distributed online prediction using mini-batches," J. Mach. Learn. Res., vol. 13, pp. 165-202, 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 165-202
-
-
Dekel, O.1
Gilad-Bachrach, R.2
Shamir, O.3
Xiao, L.4
-
6
-
-
84897543082
-
Mini-batch primal and dual methods for SVMs
-
M. Takác, A. Bijral, P. Richtárik, and N. Srebro, "Mini-batch primal and dual methods for SVMs," in Proc. ICML, 2013.
-
(2013)
Proc. ICML
-
-
Takác, M.1
Bijral, A.2
Richtárik, P.3
Srebro, N.4
-
7
-
-
77957582791
-
Differential privacy for statistics: What we know and what we want to learn
-
C. Dwork and A. Smith, "Differential privacy for statistics: What we know and what we want to learn," Journal of Privacy and Confidentiality, vol. 1, no. 2, pp. 135-154, 2009.
-
(2009)
Journal of Privacy and Confidentiality
, vol.1
, Issue.2
, pp. 135-154
-
-
Dwork, C.1
Smith, A.2
-
8
-
-
85032751978
-
Signal processing and machine learning with differential privacy: Algorithms and challenges for continuous data
-
September
-
A. D. Sarwate and K. Chaudhuri, "Signal processing and machine learning with differential privacy: Algorithms and challenges for continuous data," IEEE Sig. Proc. Mag., vol. 30, no. 5, pp. 86-94, September 2013.
-
(2013)
IEEE Sig. Proc. Mag.
, vol.30
, Issue.5
, pp. 86-94
-
-
Sarwate, A.D.1
Chaudhuri, K.2
-
9
-
-
84874276742
-
Differentially private filtering
-
Maui, HI, USA, December
-
J. Le Ny and G. J. Pappas, "Differentially private filtering," in Proc. CDC, Maui, HI, USA, December 2012, pp. 3398-3403.
-
(2012)
Proc. CDC
, pp. 3398-3403
-
-
Le Ny, J.1
Pappas, G.J.2
-
10
-
-
84875719669
-
Differentially private Kalman filtering
-
Monticello, IL, USA, October
-
-, "Differentially private Kalman filtering," in Proc. Allerton, Monticello, IL, USA, October 2012, pp. 1618-1625.
-
(2012)
Proc. Allerton
, pp. 1618-1625
-
-
Le Ny, J.1
Pappas, G.J.2
-
11
-
-
79955858775
-
Differentially private empirical risk minimization
-
March
-
K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, "Differentially private empirical risk minimization," J. Mach. Learn. Res., vol. 12, pp. 1069-1109, March 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1069-1109
-
-
Chaudhuri, K.1
Monteleoni, C.2
Sarwate, A.D.3
-
12
-
-
84877781092
-
Learning in a large function space: Privacy-preserving mechanisms for SVM learning
-
B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft, "Learning in a large function space: Privacy-preserving mechanisms for SVM learning," Journal of Privacy and Confidentiality, vol. 4, no. 1, pp. 65-100, 2012.
-
(2012)
Journal of Privacy and Confidentiality
, vol.4
, Issue.1
, pp. 65-100
-
-
Rubinstein, B.I.P.1
Bartlett, P.L.2
Huang, L.3
Taft, N.4
-
13
-
-
84877786307
-
Privacy aware learning
-
J. Duchi, M. Jordan, and M. Wainwright, "Privacy aware learning," in Adv. NIPS 25, 2012, pp. 1439-1447.
-
(2012)
Adv. NIPS
, vol.25
, pp. 1439-1447
-
-
Duchi, J.1
Jordan, M.2
Wainwright, M.3
-
15
-
-
77956293777
-
Privacy integrated queries: An extensible platform for privacy-preserving data analysis
-
September
-
F. McSherry, "Privacy integrated queries: an extensible platform for privacy-preserving data analysis," Communications of the ACM, vol. 53, no. 9, pp. 89-97, September 2010.
-
(2010)
Communications of the ACM
, vol.53
, Issue.9
, pp. 89-97
-
-
McSherry, F.1
-
16
-
-
85161972679
-
Probabilistic inference and differential privacy
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.
-
O. Williams and F. McSherry, "Probabilistic inference and differential privacy," in Adv. NIPS 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds., 2010, pp. 2451-245.
-
(2010)
Adv. NIPS
, vol.23
, pp. 2451-3245
-
-
Williams, O.1
McSherry, F.2
-
17
-
-
33244468835
-
Practical privacy: The SuLQ framework
-
New York, NY, USA: ACM
-
A. Blum, C. Dwork, F. McSherry, and K. Nissim, "Practical privacy: The SuLQ framework," in Proc. PODS. New York, NY, USA: ACM, 2005, pp. 128-138.
-
(2005)
Proc. PODS
, pp. 128-138
-
-
Blum, A.1
Dwork, C.2
McSherry, F.3
Nissim, K.4
-
18
-
-
0242698166
-
KDD-cup 99: Knowledge discovery in a charitable organization's donor database
-
Jan.
-
S. Rosset and A. Inger, "KDD-cup 99: knowledge discovery in a charitable organization's donor database," SIGKDD Explor. Newsl., vol. 1, no. 2, pp. 85-90, Jan. 2000.
-
(2000)
SIGKDD Explor. Newsl.
, vol.1
, Issue.2
, pp. 85-90
-
-
Rosset, S.1
Inger, A.2
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in Proc. IEEE, 1998, pp. 2278-2324.
-
(1998)
Proc. IEEE
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
|