메뉴 건너뛰기




Volumn 26, Issue 7, 2016, Pages 3285-3296

Network-level structure-function relationships in human neocortex

Author keywords

Connectome; Multivariate; Network; Partial least squares

Indexed keywords

ARTICLE; BRAIN CORTEX; CONNECTOME; DIFFUSION TENSOR IMAGING; HUMAN; HUMAN EXPERIMENT; MULTIVARIATE ANALYSIS; NEOCORTEX; NERVE CELL NETWORK; NEUROANATOMY; NORMAL HUMAN; PARTIAL LEAST SQUARES REGRESSION; PRIORITY JOURNAL; STRUCTURE ACTIVITY RELATION; DIAGNOSTIC IMAGING; LEAST SQUARE ANALYSIS; NERVE TRACT; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; PROCEDURES; REST;

EID: 84969730841     PISSN: 10473211     EISSN: 14602199     Source Type: Journal    
DOI: 10.1093/cercor/bhw089     Document Type: Article
Times cited : (240)

References (87)
  • 1
    • 76349111180 scopus 로고    scopus 로고
    • Partial least squares regression and projection on latent structure regression (PLS regression)
    • Abdi H. 2010. Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdiscip Rev Comput Stat. 2(1):97-106.
    • (2010) Wiley Interdiscip Rev Comput Stat , vol.2 , Issue.1 , pp. 97-106
    • Abdi, H.1
  • 2
    • 84862892867 scopus 로고    scopus 로고
    • Functional connectivity between anatomically unconnected areas is shaped by collective networklevel effects in the macaque cortex
    • Adachi Y, Osada T, Sporns O, Watanbe T, Matsui T, Miyamoto K, Miyashita Y. 2012. Functional connectivity between anatomically unconnected areas is shaped by collective networklevel effects in the macaque cortex. Cereb Cortex. 22(7): 1586-1592.
    • (2012) Cereb Cortex , vol.22 , Issue.7 , pp. 1586-1592
    • Adachi, Y.1    Osada, T.2    Sporns, O.3    Watanbe, T.4    Matsui, T.5    Miyamoto, K.6    Miyashita, Y.7
  • 4
    • 84875868755 scopus 로고    scopus 로고
    • Robust detection of dynamic community structure in networks
    • Bassett D, Porter M, Wymbs N, Grafton S, Carlson J, Mucha P. 2013. Robust detection of dynamic community structure in networks. Chaos. 23(1):013142.
    • (2013) Chaos , vol.23 , Issue.1 , pp. 013142
    • Bassett, D.1    Porter, M.2    Wymbs, N.3    Grafton, S.4    Carlson, J.5    Mucha, P.6
  • 6
    • 60849136325 scopus 로고    scopus 로고
    • Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease
    • Buckner R, Sepulcre J, Talukdar T, Krienen F, Liu H, Hedden T, Andrews-Hanna J, Sperling RA, Johnson K. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci. 29(6):1860-1873.
    • (2009) J Neurosci , vol.29 , Issue.6 , pp. 1860-1873
    • Buckner, R.1    Sepulcre, J.2    Talukdar, T.3    Krienen, F.4    Liu, H.5    Hedden, T.6    Andrews-Hanna, J.7    Sperling, R.A.8    Johnson, K.9
  • 9
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • Cattell R. 1966. The scree test for the number of factors. Multivar Behav Res. 1(2):245-276.
    • (1966) Multivar Behav Res , vol.1 , Issue.2 , pp. 245-276
    • Cattell, R.1
  • 10
    • 0021924760 scopus 로고
    • Topography and trajectories of commissural fibers of the superior temporal region in the rhesus monkey
    • Cipolloni PB, Pandya DN. 1985. Topography and trajectories of commissural fibers of the superior temporal region in the rhesus monkey. Exp Brain Res. 57(2):381-389.
    • (1985) Exp Brain Res , vol.57 , Issue.2 , pp. 381-389
    • Cipolloni, P.B.1    Pandya, D.N.2
  • 11
    • 33646680105 scopus 로고    scopus 로고
    • Detecting rich-club ordering in complex networks
    • Colizza V, Flammini A, Serrano M, Vespignani A. 2006. Detecting rich-club ordering in complex networks. Nat Phys. 2(2):110-115.
    • (2006) Nat Phys , vol.2 , Issue.2 , pp. 110-115
    • Colizza, V.1    Flammini, A.2    Serrano, M.3    Vespignani, A.4
  • 12
    • 84955576878 scopus 로고    scopus 로고
    • Meta-connectomics: Human brain network and connectivity meta-analyses
    • Crossley NA, Fox PT, Bullmore ET. 2016. Meta-connectomics: human brain network and connectivity meta-analyses. Psychol Med. doi:10. 1017/S0033291715002895.
    • (2016) Psychol Med
    • Crossley, N.A.1    Fox, P.T.2    Bullmore, E.T.3
  • 14
    • 67649886440 scopus 로고    scopus 로고
    • Key role of coupling, delay, and noise in resting brain fluctuations
    • Deco G, Jirsa V, McIntosh A, Sporns O, Kotter R. 2009. Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA. 106(25):10302-10307.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.25 , pp. 10302-10307
    • Deco, G.1    Jirsa, V.2    McIntosh, A.3    Sporns, O.4    Kotter, R.5
  • 17
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • Eckart C, Young G. 1936. The approximation of one matrix by another of lower rank. Psychometrika. 1(3):211-218.
    • (1936) Psychometrika , vol.1 , Issue.3 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 18
    • 84964203940 scopus 로고
    • Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
    • Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. 1(1):54-75.
    • (1986) Stat Sci , vol.1 , Issue.1 , pp. 54-75
    • Efron, B.1    Tibshirani, R.2
  • 19
    • 22144469412 scopus 로고    scopus 로고
    • The human brain is intrinsically organized into dynamic, anticorrelated functional networks
    • Fox M, Snyder A, Vincent J, Corbetta M, Van Essen D, Raichle M. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 102(27):9673-9678.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.27 , pp. 9673-9678
    • Fox, M.1    Snyder, A.2    Vincent, J.3    Corbetta, M.4    Van Essen, D.5    Raichle, M.6
  • 20
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: A synthesis
    • Friston K. 1994. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 2(1-2):56-78.
    • (1994) Hum Brain Mapp , vol.2 , Issue.1-2 , pp. 56-78
    • Friston, K.1
  • 21
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the exploration of the brains dynamic repertoire
    • Ghosh A, Rho Y, McIntosh A, Kotter R, Jirsa V. 2008. Noise during rest enables the exploration of the brains dynamic repertoire. PLoS Comput Biol. 4(10):e1000196-e1000196.
    • (2008) PLoS Comput Biol , vol.4 , Issue.10 , pp. e1000196-e1000196
    • Ghosh, A.1    Rho, Y.2    McIntosh, A.3    Kotter, R.4    Jirsa, V.5
  • 22
    • 59749085044 scopus 로고    scopus 로고
    • Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
    • Gong G, He Y, Concha L, Lebel C, Gross D, Evans A, Beaulieu C. 2009. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex. 19(3):524-536.
    • (2009) Cereb Cortex , vol.19 , Issue.3 , pp. 524-536
    • Gong, G.1    He, Y.2    Concha, L.3    Lebel, C.4    Gross, D.5    Evans, A.6    Beaulieu, C.7
  • 26
    • 57749172272 scopus 로고    scopus 로고
    • Resting-state functional connectivity reflects structural connectivity in the default mode network
    • Greicius M, Supekar K, Menon V, Dougherty R. 2009. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 19(1):72-78.
    • (2009) Cereb Cortex , vol.19 , Issue.1 , pp. 72-78
    • Greicius, M.1    Supekar, K.2    Menon, V.3    Dougherty, R.4
  • 28
    • 84876744243 scopus 로고    scopus 로고
    • Brain organization into resting state networks emerges at criticality on a model of the human connectome
    • Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR. 2013. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys Rev Lett. 110:178101.
    • (2013) Phys Rev Lett , vol.110 , pp. 178101
    • Haimovici, A.1    Tagliazucchi, E.2    Balenzuela, P.3    Chialvo, D.R.4
  • 29
    • 84914820204 scopus 로고    scopus 로고
    • Functional connectivity dynamics: Modeling the switching behavior of the resting state
    • Hansen ECA, Battaglia D, Spiegler A, Deco G, Jirsa VK. 2015. Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage. 105:525-535.
    • (2015) NeuroImage , vol.105 , pp. 525-535
    • Hansen, E.C.A.1    Battaglia, D.2    Spiegler, A.3    Deco, G.4    Jirsa, V.K.5
  • 32
    • 34547219105 scopus 로고    scopus 로고
    • Network structure of cerebral cortex shapes functional connectivity on multiple time scales
    • Honey C, Kotter R, Breakspear M, Sporns O. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA. 104(24): 10240-10245.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.24 , pp. 10240-10245
    • Honey, C.1    Kotter, R.2    Breakspear, M.3    Sporns, O.4
  • 34
    • 77954386968 scopus 로고    scopus 로고
    • Can structure predict function in the human brain?
    • Honey C, Thivierge J-P, Sporns O. 2010. Can structure predict function in the human brain? NeuroImage. 52(3):766-776.
    • (2010) NeuroImage , vol.52 , Issue.3 , pp. 766-776
    • Honey, C.1    Thivierge, J.-P.2    Sporns, O.3
  • 37
    • 84875234773 scopus 로고    scopus 로고
    • White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI
    • Jones D, Knosche T, Turner R. 2013. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage. 73:239-254.
    • (2013) NeuroImage , vol.73 , pp. 239-254
    • Jones, D.1    Knosche, T.2    Turner, R.3
  • 38
    • 0036335198 scopus 로고    scopus 로고
    • An investigation of functional and anatomical connectivity using magnetic resonance imaging
    • Koch M, Norris D, Hund-Georgiadis M. 2002. An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage. 16(1):241-250.
    • (2002) NeuroImage , vol.16 , Issue.1 , pp. 241-250
    • Koch, M.1    Norris, D.2    Hund-Georgiadis, M.3
  • 39
    • 79955023796 scopus 로고    scopus 로고
    • Partial least squares (PLS)methods for neuroimaging: A tutorial and review
    • Krishnan A, Williams L, McIntosh A, Abdi H. 2011. Partial least squares (PLS)methods for neuroimaging: a tutorial and review. NeuroImage. 56(2):455-475.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 455-475
    • Krishnan, A.1    Williams, L.2    McIntosh, A.3    Abdi, H.4
  • 40
    • 0037012880 scopus 로고    scopus 로고
    • Specificity and stability in topology of protein networks
    • Maslov S, Sneppen K. 2002. Specificity and stability in topology of protein networks. Science. 296(5569):910-913.
    • (2002) Science , vol.296 , Issue.5569 , pp. 910-913
    • Maslov, S.1    Sneppen, K.2
  • 41
    • 0034324960 scopus 로고    scopus 로고
    • Towards a network theory of cognition
    • McIntosh A. 2000. Towards a network theory of cognition. Neural Networks. 13(8):861-870.
    • (2000) Neural Networks , vol.13 , Issue.8 , pp. 861-870
    • McIntosh, A.1
  • 42
    • 84862981709 scopus 로고    scopus 로고
    • Tracing the route to path analysis in neuroimaging
    • McIntosh A. 2012. Tracing the route to path analysis in neuroimaging. NeuroImage. 62(2):887-890.
    • (2012) NeuroImage , vol.62 , Issue.2 , pp. 887-890
    • McIntosh, A.1
  • 43
    • 0029941179 scopus 로고    scopus 로고
    • Spatial pattern analysis of functional brain images using partial least squares
    • McIntosh A, Bookstein F, Haxby J, Grady C. 1996. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage. 3(3):143-157.
    • (1996) Neuroimage , vol.3 , Issue.3 , pp. 143-157
    • McIntosh, A.1    Bookstein, F.2    Haxby, J.3    Grady, C.4
  • 44
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • McIntosh A, Gonzalez-Lima F. 1994. Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp. 2(1-2):2-22.
    • (1994) Hum Brain Mapp , vol.2 , Issue.1-2 , pp. 2-22
    • McIntosh, A.1    Gonzalez-Lima, F.2
  • 45
    • 84872465552 scopus 로고    scopus 로고
    • Multivariate statistical analyses for neuroimaging data
    • McIntosh A, Miŝic? B. 2013. Multivariate statistical analyses for neuroimaging data. Annu Rev Psychol. 64:499-525.
    • (2013) Annu Rev Psychol , vol.64 , pp. 499-525
    • McIntosh, A.1    Miŝic, B.2
  • 46
    • 7044249748 scopus 로고    scopus 로고
    • Partial least squares analysis of neuroimaging data: Applications and advances
    • McIntosh AR, Lobaugh NJ. 2004. Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage. 23:S250-S263.
    • (2004) NeuroImage , vol.23 , pp. S250-S263
    • McIntosh, A.R.1    Lobaugh, N.J.2
  • 47
    • 84923086490 scopus 로고    scopus 로고
    • A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks
    • Messé A, Hutt M-T, Konig P, Hilgetag CC. 2015. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks. Sci Rep. 5:7870.
    • (2015) Sci Rep , vol.5 , pp. 7870
    • Messé, A.1    Hutt, M.-T.2    Konig, P.3    Hilgetag, C.C.4
  • 48
    • 84897460560 scopus 로고    scopus 로고
    • Relating structure and function in the human brain: Relative contributions of anatomy, stationary dynamics, and non-stationarities
    • Messé A, Rudrauf D, Benali H, Marrelec G. 2014. Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput Biol. 10(3):e1003530.
    • (2014) PLoS Comput Biol , vol.10 , Issue.3 , pp. e1003530
    • Messé, A.1    Rudrauf, D.2    Benali, H.3    Marrelec, G.4
  • 50
    • 84969626566 scopus 로고    scopus 로고
    • From regions to connections and networks: New bridges between brain and behaviour
    • In press
    • Miŝic?B, Sporns O. (forthcoming, 2016) From regions to connections and networks: new bridges between brain and behavior. Curr Opin Neurobiol. In press.
    • (2016) Curr Opin Neurobiol
    • Miŝic, B.1    Sporns, O.2
  • 51
    • 84896694845 scopus 로고    scopus 로고
    • Communication efficiency and congestion of signal traffic in large-scale brain networks
    • Miŝic? B, Sporns O, McIntosh A. 2014. Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput Biol. 10(1):e1003427.
    • (2014) PLoS Comput Biol , vol.10 , Issue.1 , pp. e1003427
    • Miŝic, B.1    Sporns, O.2    McIntosh, A.3
  • 52
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M, Girvan M. 2004. Finding and evaluating community structure in networks. Phys Rev E. 69(2):026113.
    • (2004) Phys Rev e , vol.69 , Issue.2 , pp. 026113
    • Newman, M.1    Girvan, M.2
  • 53
    • 84887291519 scopus 로고    scopus 로고
    • Structural and functional brain networks: From connections to cognition
    • Park H-J, Friston K. 2013. Structural and functional brain networks: from connections to cognition. Science. 342 (6158):1238411.
    • (2013) Science , vol.342 , Issue.6158 , pp. 1238411
    • Park, H.-J.1    Friston, K.2
  • 54
    • 84924363500 scopus 로고    scopus 로고
    • Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity
    • Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D, Corbetta M. 2015. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput Biol. 11(2):e1004100.
    • (2015) PLoS Comput Biol , vol.11 , Issue.2 , pp. e1004100
    • Ponce-Alvarez, A.1    Deco, G.2    Hagmann, P.3    Romani, G.L.4    Mantini, D.5    Corbetta, M.6
  • 55
    • 84855455705 scopus 로고    scopus 로고
    • Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
    • Power J, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 59(3): 2142-2154.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2142-2154
    • Power, J.1    Barnes, K.A.2    Snyder, A.Z.3    Schlaggar, B.L.4    Petersen, S.E.5
  • 57
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 52(3): 1059-1069.
    • (2010) NeuroImage , vol.52 , Issue.3 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 58
    • 79957450857 scopus 로고    scopus 로고
    • Weight-conserving characterization of complex functional brain networks
    • Rubinov M, Sporns O. 2011. Weight-conserving characterization of complex functional brain networks. NeuroImage. 56(4): 2068-2079.
    • (2011) NeuroImage , vol.56 , Issue.4 , pp. 2068-2079
    • Rubinov, M.1    Sporns, O.2
  • 59
    • 84963778492 scopus 로고    scopus 로고
    • Co-ordinated structural and functional covariance in the adolescent brain underlies face processing performance
    • Shaw DJ, Marecek R, Grosbra M-H, Leonard G, Pike GB, Paus T. 2016. Co-ordinated structural and functional covariance in the adolescent brain underlies face processing performance. Soc Cogn Affect Neurosci. doi:10. 1093/scan/nsv138.
    • (2016) Soc Cogn Affect Neurosci
    • Shaw, D.J.1    Marecek, R.2    Grosbra, M.-H.3    Leonard, G.4    Pike, G.B.5    Paus, T.6
  • 60
    • 84870159038 scopus 로고    scopus 로고
    • Information processing architecture of functionally defined clusters in the macaque cortex
    • Shen K, Bezgin G, Hutchison R, Gati J, Menon R, Everling S, McIntosh A. 2012. Information processing architecture of functionally defined clusters in the macaque cortex. J Neurosci. 32(48):17465-17476.
    • (2012) J Neurosci , vol.32 , Issue.48 , pp. 17465-17476
    • Shen, K.1    Bezgin, G.2    Hutchison, R.3    Gati, J.4    Menon, R.5    Everling, S.6    McIntosh, A.7
  • 62
    • 54149112120 scopus 로고    scopus 로고
    • Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations
    • Skudlarski P, Jagannathan K, Calhoun V, Hampson M, Skudlarska B, Pearlson G. 2008. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage. 43(3):554-561.
    • (2008) NeuroImage , vol.43 , Issue.3 , pp. 554-561
    • Skudlarski, P.1    Jagannathan, K.2    Calhoun, V.3    Hampson, M.4    Skudlarska, B.5    Pearlson, G.6
  • 67
    • 38349140387 scopus 로고    scopus 로고
    • Identification and classification of hubs in brain networks
    • Sporns O, Honey C, Kotter R. 2007. Identification and classification of hubs in brain networks. PLoS ONE. 2(10):e1049-e1049.
    • (2007) PLoS ONE , vol.2 , Issue.10 , pp. e1049-e1049
    • Sporns, O.1    Honey, C.2    Kotter, R.3
  • 68
    • 13844284450 scopus 로고    scopus 로고
    • Motifs in brain networks
    • Sporns O, Kotter R. 2004. Motifs in brain networks. PLoS Biology. 2(11):e369.
    • (2004) PLoS Biology , vol.2 , Issue.11 , pp. e369
    • Sporns, O.1    Kotter, R.2
  • 69
    • 4444229670 scopus 로고    scopus 로고
    • The small world of the cerebral cortex
    • Sporns O, Zwi JD. 2004. The small world of the cerebral cortex. Neuroinformatics. 2(2):145-162.
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 145-162
    • Sporns, O.1    Zwi, J.D.2
  • 72
    • 84915758306 scopus 로고    scopus 로고
    • Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
    • Thomas C, Frank Q, Irfanoglu M, Modi P, Saleem K, Leopold D, Pierpaoli C. 2014. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA. 111(46):16574-16579.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.46 , pp. 16574-16579
    • Thomas, C.1    Frank, Q.2    Irfanoglu, M.3    Modi, P.4    Saleem, K.5    Leopold, D.6    Pierpaoli, C.7
  • 73
    • 77953092708 scopus 로고    scopus 로고
    • Functional connectivity density mapping
    • Tomasi D, Volkow N. 2010. Functional connectivity density mapping. Proc Natl Acad Sci USA. 107(21):9885-9890.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.21 , pp. 9885-9890
    • Tomasi, D.1    Volkow, N.2
  • 74
    • 80052551417 scopus 로고    scopus 로고
    • Comparing community structure to characteristics in online collegiate social networks
    • Traud A, Kelsic E, Mucha P, Porter M. 2011. Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 53(3):526-543.
    • (2011) SIAM Rev , vol.53 , Issue.3 , pp. 526-543
    • Traud, A.1    Kelsic, E.2    Mucha, P.3    Porter, M.4
  • 76
    • 84863952016 scopus 로고    scopus 로고
    • High-cost, high-capacity backbone for global brain communication
    • van den Heuvel M, Kahn R, Goni J, Sporns O. 2012. High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA. 109(28):11372-11377.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.28 , pp. 11372-11377
    • Van Den Heuvel, M.1    Kahn, R.2    Goni, J.3    Sporns, O.4
  • 77
    • 67049122306 scopus 로고    scopus 로고
    • Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
    • van den Heuvel M, Mandl R, Kahn R, Pol H, Hilleke E. 2009. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 30(10):3127-3141.
    • (2009) Hum Brain Mapp , vol.30 , Issue.10 , pp. 3127-3141
    • Van Den Heuvel, M.1    Mandl, R.2    Kahn, R.3    Pol, H.4    Hilleke, E.5
  • 78
    • 84888858320 scopus 로고    scopus 로고
    • Network hubs in the human brain
    • van den Heuvel M, Sporns O. 2013. Network hubs in the human brain. Trends Cogn Sci. 17(12):683-696.
    • (2013) Trends Cogn Sci , vol.17 , Issue.12 , pp. 683-696
    • Van Den Heuvel, M.1    Sporns, O.2
  • 79
    • 80155148207 scopus 로고    scopus 로고
    • Rich-club organization of the human connectome
    • van den Heuvel M, Sporns O. 2011. Rich-club organization of the human connectome. J Neurosci. 31(44):15775-15786.
    • (2011) J Neurosci , vol.31 , Issue.44 , pp. 15775-15786
    • Van Den Heuvel, M.1    Sporns, O.2
  • 81
    • 84949527356 scopus 로고    scopus 로고
    • Associated microscale spine density andmacroscale connectivity disruptions in schizophrenia
    • van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS. 2015b. Associated microscale spine density andmacroscale connectivity disruptions in schizophrenia. Biol Psychiatry. doi: 10. 1016/j. biopsych. 2015. 10. 005.
    • (2015) Biol Psychiatry
    • Van Den Heuvel, M.P.1    Scholtens, L.H.2    De Reus, M.A.3    Kahn, R.S.4
  • 83
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • In Krishnaiah P, editor.. New York: Academic Press
    • Wold H. 1966. Estimation of principal components and related models by iterative least squares. In Krishnaiah P, editor. Multivariate analysis, Vol. 1. New York: Academic Press, p. 391-420.
    • (1966) Multivariate Analysis , vol.1 , pp. 391-420
    • Wold, H.1
  • 84
    • 77956192649 scopus 로고    scopus 로고
    • Generalized-sampling imaging
    • Yeh F, Wedeen V, TsengW. 2010. Generalized-sampling imaging. IEEE T Med Imaging. 29(9):1626-1635.
    • (2010) IEEE T Med Imaging , vol.29 , Issue.9 , pp. 1626-1635
    • Yeh, F.1    Wedeen, V.2    Tseng, W.3
  • 86
    • 84858138977 scopus 로고    scopus 로고
    • On the use of correlation as a measure of network connectivity
    • Zalesky A, Fornito A, Bullmore ET. 2012. On the use of correlation as a measure of network connectivity. NeuroImage. 60(4): 2096-2106.
    • (2012) NeuroImage , vol.60 , Issue.4 , pp. 2096-2106
    • Zalesky, A.1    Fornito, A.2    Bullmore, E.T.3
  • 87
    • 77953367591 scopus 로고    scopus 로고
    • Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks
    • Zamora-Lopez G, Zhou C, Kurths J. 2010. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinformatics. 4: Article number 83.
    • (2010) Front Neuroinformatics , pp. 4
    • Zamora-Lopez, G.1    Zhou, C.2    Kurths, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.