메뉴 건너뛰기




Volumn 11, Issue 2, 2015, Pages

Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; DYNAMICS; SYNCHRONIZATION; TOPOLOGY;

EID: 84924363500     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004100     Document Type: Article
Times cited : (208)

References (58)
  • 1
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • Biswal B, Yetkin F, Haughton V, Hyde J, (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537–541. 8524021
    • (1995) Magn Reson Med , vol.34 , pp. 537-541
    • Biswal, B.1    Yetkin, F.2    Haughton, V.3    Hyde, J.4
  • 2
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • Calhoun VD, Adali T, Pearlson GD, Pekar JJ, (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14: 140–151. 11559959
    • (2001) Hum Brain Mapp , vol.14 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 3
    • 0037422586 scopus 로고    scopus 로고
    • Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
    • Greicius MD, Krasnow B, Reiss AL, Menon V, (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253–258. 12506194
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 253-258
    • Greicius, M.D.1    Krasnow, B.2    Reiss, A.L.3    Menon, V.4
  • 4
    • 24144436151 scopus 로고    scopus 로고
    • Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis
    • Fransson P, (2005) Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15–29. 15852468
    • (2005) Hum Brain Mapp , vol.26 , pp. 15-29
    • Fransson, P.1
  • 5
    • 34548014282 scopus 로고    scopus 로고
    • Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
    • Fox MD, Raichle ME, (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711. 17704812
    • (2007) Nat Rev Neurosci , vol.8 , pp. 700-711
    • Fox, M.D.1    Raichle, M.E.2
  • 7
    • 62749184860 scopus 로고    scopus 로고
    • An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques
    • Sui J, Adali T, Pearlson GD, Calhoun VD, (2009) An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques. Neuroimage 46: 73–86. doi: 10.1016/j.neuroimage.2009.01.026 19457398
    • (2009) Neuroimage , vol.46 , pp. 73-86
    • Sui, J.1    Adali, T.2    Pearlson, G.D.3    Calhoun, V.D.4
  • 8
    • 77950544458 scopus 로고    scopus 로고
    • Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography
    • Liu Z, Fukunaga M, de Zwart JA, Duyn JH, (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51: 102–111. doi: 10.1016/j.neuroimage.2010.01.092 20123024
    • (2010) Neuroimage , vol.51 , pp. 102-111
    • Liu, Z.1    Fukunaga, M.2    de Zwart, J.A.3    Duyn, J.H.4
  • 9
    • 80053647086 scopus 로고    scopus 로고
    • Investigating the electrophysiological basis of resting state networks using magnetoencephalography
    • Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, et al. (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci USA 108: 16783–16788. doi: 10.1073/pnas.1112685108 21930901
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 16783-16788
    • Brookes, M.J.1    Woolrich, M.2    Luckhoo, H.3    Price, D.4    Hale, J.R.5
  • 10
  • 11
    • 84861423904 scopus 로고    scopus 로고
    • A cortical core for dynamic integration of functional networks in the resting human brain
    • de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, et al. (2012) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74: 753–764. doi: 10.1016/j.neuron.2012.03.031 22632732
    • (2012) Neuron , vol.74 , pp. 753-764
    • de Pasquale, F.1    Della Penna, S.2    Snyder, A.Z.3    Marzetti, L.4
  • 12
    • 84861762655 scopus 로고    scopus 로고
    • Inferring task-related networks using independent component analysis in magnetoencephalography
    • Luckhoo H, Hale JR, Stokes MG, Nobre AC, Morris PG, et al. (2012) Inferring task-related networks using independent component analysis in magnetoencephalography. Neuroimage 62: 530–541. doi: 10.1016/j.neuroimage.2012.04.046 22569064
    • (2012) Neuroimage , vol.62 , pp. 530-541
    • Luckhoo, H.1    Hale, J.R.2    Stokes, M.G.3    Nobre, A.C.4    Morris, P.G.5
  • 13
    • 79959358464 scopus 로고    scopus 로고
    • Brain activity at rest: a multiscale hierarchical functional organization
    • Doucet G, Naveau M, Petit L, Delcroix N, Zago L, et al. (2011) Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol 105: 2753–2763. doi: 10.1152/jn.00895.2010 21430278
    • (2011) J Neurophysiol , vol.105 , pp. 2753-2763
    • Doucet, G.1    Naveau, M.2    Petit, L.3    Delcroix, N.4    Zago, L.5
  • 14
    • 81355153871 scopus 로고    scopus 로고
    • Functional network organization of the human brain
    • Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, et al. (2011). Functional network organization of the human brain. Neuron 72: 665–678. doi: 10.1016/j.neuron.2011.09.006 22099467
    • (2011) Neuron , vol.72 , pp. 665-678
    • Power, J.D.1    Cohen, A.L.2    Nelson, S.M.3    Wig, G.S.4    Barnes, K.A.5
  • 15
    • 80052566098 scopus 로고    scopus 로고
    • The organization of the human cerebral cortex estimated by functional connectivity
    • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, et al. (2011). The organization of the human cerebral cortex estimated by functional connectivity. J Neurophysiol 106: 1125–1165. doi: 10.1152/jn.00338.2011 21653723
    • (2011) J Neurophysiol , vol.106 , pp. 1125-1165
    • Yeo, B.T.1    Krienen, F.M.2    Sepulcre, J.3    Sabuncu, M.R.4    Lashkari, D.5
  • 16
    • 84880177066 scopus 로고    scopus 로고
    • Resting state network estimation in individual subjects
    • Hacker CD, Laumann TO, Szrama NP, Baldassarre A, Snyder AZ, et al. (2013) Resting state network estimation in individual subjects. Neuroimage 82: 616–633. doi: 10.1016/j.neuroimage.2013.05.108 23735260
    • (2013) Neuroimage , vol.82 , pp. 616-633
    • Hacker, C.D.1    Laumann, T.O.2    Szrama, N.P.3    Baldassarre, A.4    Snyder, A.Z.5
  • 17
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang C, Glover GH, (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50: 81–98. doi: 10.1016/j.neuroimage.2009.12.011 20006716
    • (2010) Neuroimage , vol.50 , pp. 81-98
    • Chang, C.1    Glover, G.H.2
  • 18
    • 84870997831 scopus 로고    scopus 로고
    • A sliding time-window ICA reveals spatial variability of the default mode network in time
    • Kiviniemi V, Vire T, Remes J, Elseoud AA, Starck T, et al. (2011) A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connectivity 1: 339–347. doi: 10.1089/brain.2011.0036 22432423
    • (2011) Brain Connectivity , vol.1 , pp. 339-347
    • Kiviniemi, V.1    Vire, T.2    Remes, J.3    Elseoud, A.A.4    Starck, T.5
  • 19
    • 84894232779 scopus 로고    scopus 로고
    • Tracking whole-brain connectivity dynamics in the resting state
    • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, et al. (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24 (3): 663–676. doi: 10.1093/cercor/bhs352 23146964
    • (2014) Cereb. Cortex , vol.24 , Issue.3 , pp. 663-676
    • Allen, E.A.1    Damaraju, E.2    Plis, S.M.3    Erhardt, E.B.4    Eichele, T.5
  • 20
    • 84880330342 scopus 로고    scopus 로고
    • Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
    • Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS, (2013) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34: 2154–77. doi: 10.1002/hbm.22058 22438275
    • (2013) Hum Brain Mapp , vol.34 , pp. 2154-2177
    • Hutchison, R.M.1    Womelsdorf, T.2    Gati, J.S.3    Everling, S.4    Menon, R.S.5
  • 21
    • 60549089357 scopus 로고    scopus 로고
    • Predicting human resting-state functional connectivity from structural connectivity
    • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran J, et al. (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106: 2035–2040. doi: 10.1073/pnas.0811168106 19188601
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 2035-2040
    • Honey, C.J.1    Sporns, O.2    Cammoun, L.3    Gigandet, X.4    Thiran, J.5
  • 22
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the explorationof the brain’s dynamic repertoire
    • Ghosh A, Rho Y, McIntosh A, Kotter R, Jirsa V, (2008) Noise during rest enables the explorationof the brain’s dynamic repertoire. PLoS Comput Biol 4:e1000196. doi: 10.1371/journal.pcbi.1000196 18846206
    • (2008) PLoS Comput Biol , vol.4 , pp. 1000196
    • Ghosh, A.1    Rho, Y.2    McIntosh, A.3    Kotter, R.4    Jirsa, V.5
  • 23
    • 84857802687 scopus 로고    scopus 로고
    • Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
    • Deco G, Jirsa VK, (2012) Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci 32: 3366–3375. doi: 10.1523/JNEUROSCI.2523-11.2012 22399758
    • (2012) J Neurosci , vol.32 , pp. 3366-3375
    • Deco, G.1    Jirsa, V.K.2
  • 24
    • 84880452652 scopus 로고    scopus 로고
    • Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
    • Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, et al. (2013) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci 33: 11239–11252. doi: 10.1523/JNEUROSCI.1091-13.2013 23825427
    • (2013) J Neurosci , vol.33 , pp. 11239-11252
    • Deco, G.1    Ponce-Alvarez, A.2    Mantini, D.3    Romani, G.L.4    Hagmann, P.5
  • 25
    • 63549113929 scopus 로고    scopus 로고
    • Broadband criticality of human brain network synchronization
    • Kitzbichler MG, Smith ML, Christensen SR, Bullmore E, (2009) Broadband criticality of human brain network synchronization. PLoS Comp Biol 5: e1000314. doi: 10.1371/journal.pcbi.1000314 19300473
    • (2009) PLoS Comp Biol , vol.5 , pp. 1000314
    • Kitzbichler, M.G.1    Smith, M.L.2    Christensen, S.R.3    Bullmore, E.4
  • 26
    • 84889677970 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity
    • Glerean E, Salmi J, Lahnakoski JM, Jääskeläinen IP, Sams M, (2012) Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain connectivity 2: 91–101. doi: 10.1089/brain.2011.0068 22559794
    • (2012) Brain connectivity , vol.2 , pp. 91-101
    • Glerean, E.1    Salmi, J.2    Lahnakoski, J.M.3    Jääskeläinen, I.P.4    Sams, M.5
  • 27
    • 84860996002 scopus 로고    scopus 로고
    • Anatomical connectivity influences both intra- and inter-brain synchronizations
    • Dumas G, Chavez M, Nadel J, Martinerie J, (2012) Anatomical connectivity influences both intra- and inter-brain synchronizations. PLoS ONE 7(5): e36414. doi: 10.1371/journal.pone.0036414 22590539
    • (2012) PLoS ONE , vol.7 , Issue.5 , pp. 36414
    • Dumas, G.1    Chavez, M.2    Nadel, J.3    Martinerie, J.4
  • 28
    • 84900316533 scopus 로고    scopus 로고
    • Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach
    • Gauvin L, Panisson A, Cattuto C, (2014) Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9(1): e86028. doi: 10.1371/journal.pone.0086028 24497935
    • (2014) PLoS ONE , vol.9 , Issue.1 , pp. 86028
    • Gauvin, L.1    Panisson, A.2    Cattuto, C.3
  • 30
    • 41149160764 scopus 로고    scopus 로고
    • Noise in the nervous system
    • Faisal A, Selen L, Wolpert D, (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303. doi: 10.1038/nrn2258 18319728
    • (2008) Nat Rev Neurosci , vol.9 , pp. 292-303
    • Faisal, A.1    Selen, L.2    Wolpert, D.3
  • 31
    • 84878413932 scopus 로고    scopus 로고
    • Relaxation dynamics of the Kuramoto model with uniformly distributed natural frequencies
    • Ghosh A, Gupta S, (2013) Relaxation dynamics of the Kuramoto model with uniformly distributed natural frequencies. Physica A 392: 3812–3818.
    • (2013) Physica A , vol.392 , pp. 3812-3818
    • Ghosh, A.1    Gupta, S.2
  • 32
    • 84874195838 scopus 로고    scopus 로고
    • Evolutionarily novel functional networks in the human brain?
    • Mantini D, Corbetta M, Romani GL, Orban GA, Vanduffel W, (2013) Evolutionarily novel functional networks in the human brain? J Neurosci 33: 3259–3275. doi: 10.1523/JNEUROSCI.4392-12.2013 23426655
    • (2013) J Neurosci , vol.33 , pp. 3259-3275
    • Mantini, D.1    Corbetta, M.2    Romani, G.L.3    Orban, G.A.4    Vanduffel, W.5
  • 33
    • 48349097292 scopus 로고    scopus 로고
    • Mapping the structural core of human cerebral cortex
    • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159. doi: 10.1371/journal.pbio.0060159 18597554
    • (2008) PLoS Biol , vol.6 , pp. 159
    • Hagmann, P.1    Cammoun, L.2    Gigandet, X.3    Meuli, R.4    Honey, C.J.5
  • 34
    • 79956204167 scopus 로고    scopus 로고
    • Role of network oscillations in resting-state functional connectivity
    • Cabral J, Hugues E, Sporns O, Deco G, (2011) Role of network oscillations in resting-state functional connectivity. Neuroimage 57: 130–139. doi: 10.1016/j.neuroimage.2011.04.010 21511044
    • (2011) Neuroimage , vol.57 , pp. 130-139
    • Cabral, J.1    Hugues, E.2    Sporns, O.3    Deco, G.4
  • 35
    • 3042523540 scopus 로고    scopus 로고
    • Neuronal oscillations in cortical networks
    • Buzsáki G, Draguhn A, (2004) Neuronal oscillations in cortical networks. Science 304: 1926–1929. 15218136
    • (2004) Science , vol.304 , pp. 1926-1929
    • Buzsáki, G.1    Draguhn, A.2
  • 36
    • 67649664104 scopus 로고    scopus 로고
    • The fMRI signal, slow cortical potential and consciousness
    • He BJ, Raichle ME, (2009) The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 13: 302–309. doi: 10.1016/j.tics.2009.04.004 19535283
    • (2009) Trends Cogn Sci , vol.13 , pp. 302-309
    • He, B.J.1    Raichle, M.E.2
  • 37
    • 84875273413 scopus 로고    scopus 로고
    • Infraslow LFP correlates to resting-state fMRI BOLD signals
    • Pan WJ, Thompson GJ, Magnuson ME, Jaeger D, Keilholz S, (2013) Infraslow LFP correlates to resting-state fMRI BOLD signals. Neuroimage 74: 288–97. doi: 10.1016/j.neuroimage.2013.02.035 23481462
    • (2013) Neuroimage , vol.74 , pp. 288-297
    • Pan, W.J.1    Thompson, G.J.2    Magnuson, M.E.3    Jaeger, D.4    Keilholz, S.5
  • 38
    • 39449129545 scopus 로고    scopus 로고
    • On the relationship between slow cortical potentials and BOLD signal changes in humans
    • Khader P, Schicke T, Roder B, Rosler F, (2008) On the relationship between slow cortical potentials and BOLD signal changes in humans. Int J Psychophysiol 67: 252–261. 17669531
    • (2008) Int J Psychophysiol , vol.67 , pp. 252-261
    • Khader, P.1    Schicke, T.2    Roder, B.3    Rosler, F.4
  • 39
    • 12044252386 scopus 로고
    • Time is the essence: A conjecture that hemispheric specialization arises from interhemispheric conduction delay
    • Ringo JL, Doty RW, Demeter S, Simard PY, (1994) Time is the essence: A conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cerebr Cortex 4: 331–343.
    • (1994) Cerebr Cortex , vol.4 , pp. 331-343
    • Ringo, J.L.1    Doty, R.W.2    Demeter, S.3    Simard, P.Y.4
  • 41
    • 0040066783 scopus 로고
    • Patterns of synchrony in a heterogeneous Hodgkin—Huxley neural network with weak coupling
    • Hansel D, Mato G, (1993) Patterns of synchrony in a heterogeneous Hodgkin—Huxley neural network with weak coupling. Physica A 200:662–66910.
    • (1993) Physica A , vol.200 , pp. 662-66910
    • Hansel, D.1    Mato, G.2
  • 42
    • 84994000511 scopus 로고    scopus 로고
    • On the influence of amplitude on the connectivity between phases
    • Daffertshofer A, van Wijk BCM, (2011) On the influence of amplitude on the connectivity between phases. Front. Neuroinform. 5:6. doi: 10.3389/fninf.2011.00006
    • (2011) Front. Neuroinform , vol.5 , pp. 6
    • Daffertshofer, A.1    van Wijk, B.C.M.2
  • 43
    • 84859737287 scopus 로고    scopus 로고
    • Emergence of structural patterns out of synchronization in networks with competitive interactions
    • Assenza S, Gutierrez R, Gómez-Gardeñes J, Latora V, Boccaletti S, (2011) Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci Rep 1, 99 doi: 10.1038/srep00099 22355617
    • (2011) Sci Rep , vol.1 , pp. 99
    • Assenza, S.1    Gutierrez, R.2    Gómez-Gardeñes, J.3    Latora, V.4    Boccaletti, S.5
  • 44
    • 84885396361 scopus 로고    scopus 로고
    • Community structure and multi-modal oscillations in complex networks
    • Dorrian H, Borresen J, Amos M, (2013) Community structure and multi-modal oscillations in complex networks. PLoS ONE 8(10): e75569. doi: 10.1371/journal.pone.0075569 24130720
    • (2013) PLoS ONE , vol.8 , Issue.10 , pp. 75569
    • Dorrian, H.1    Borresen, J.2    Amos, M.3
  • 45
    • 80053292350 scopus 로고    scopus 로고
    • Scale-free properties of the fMRI signal during rest and task
    • He BJ, (2011) Scale-free properties of the fMRI signal during rest and task. J Neurosci 31: 13786–13795. doi: 10.1523/JNEUROSCI.2111-11.2011 21957241
    • (2011) J Neurosci , vol.31 , pp. 13786-13795
    • He, B.J.1
  • 46
    • 84891761470 scopus 로고    scopus 로고
    • The metastable brain
    • Tognoli E, Kelso JA, (2014) The metastable brain. Neuron 81: 35–48. doi: 10.1016/j.neuron.2013.12.022 24411730
    • (2014) Neuron , vol.81 , pp. 35-48
    • Tognoli, E.1    Kelso, J.A.2
  • 47
    • 77950617628 scopus 로고    scopus 로고
    • Blood oxygen level dependent signal variability is more than just noise
    • Garrett DD, Kovacevic N, McIntosh AR, Grady CL, (2010) Blood oxygen level dependent signal variability is more than just noise. J Neurosci 30: 4914–4921. doi: 10.1523/JNEUROSCI.5166-09.2010 20371811
    • (2010) J Neurosci , vol.30 , pp. 4914-4921
    • Garrett, D.D.1    Kovacevic, N.2    McIntosh, A.R.3    Grady, C.L.4
  • 48
    • 84891694993 scopus 로고    scopus 로고
    • Brain signal variability is parametrically modifiable
    • Garrett DD, McIntosh AR, Grady CL, (2013) Brain signal variability is parametrically modifiable. Cereb Cortex 150: 1–10.
    • (2013) Cereb Cortex , vol.150 , pp. 1-10
    • Garrett, D.D.1    McIntosh, A.R.2    Grady, C.L.3
  • 49
    • 84874821905 scopus 로고    scopus 로고
    • Spontaneous and task-evoked brain activity negatively interact
    • He BJ, (2013) Spontaneous and task-evoked brain activity negatively interact. J Neuroscience, 33 (11): 4672:4682. doi: 10.1523/JNEUROSCI.2922-12.2013 23486941
    • (2013) J Neuroscience , vol.33 , Issue.11 , pp. 4672-4682
    • He, B.J.1
  • 50
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E, (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72. 16399673
    • (2006) J Neurosci , vol.26 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 51
    • 84861574104 scopus 로고    scopus 로고
    • Large-scale cortical correlation structure of spontaneous oscillatory activity
    • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK, (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nature Neurosci 15:884–890. doi: 10.1038/nn.3101 22561454
    • (2012) Nature Neurosci , vol.15 , pp. 884-890
    • Hipp, J.F.1    Hawellek, D.J.2    Corbetta, M.3    Siegel, M.4    Engel, A.K.5
  • 52
    • 0030813663 scopus 로고    scopus 로고
    • PARAFAC. Tutorial and applications
    • Bro R, (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Sys 38: 149–171.
    • (1997) Chemom Intell Lab Sys , vol.38 , pp. 149-171
    • Bro, R.1
  • 53
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS, (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401: 788–791. 10548103
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 55
    • 0034183641 scopus 로고    scopus 로고
    • Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima
    • Timmerman ME, Kiers HAL, (2000) Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima. Br J Math Stat Psychol 53: 1–16. 10895519
    • (2000) Br J Math Stat Psychol , vol.53 , pp. 1-16
    • Timmerman, M.E.1    Kiers, H.A.L.2
  • 56
    • 20044373625 scopus 로고    scopus 로고
    • Independent component analysis of fMRI group studies by self-organizing clustering
    • Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, et al. (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25:193–205. 15734355
    • (2005) Neuroimage , vol.25 , pp. 193-205
    • Esposito, F.1    Scarabino, T.2    Hyvarinen, A.3    Himberg, J.4    Formisano, E.5
  • 57
    • 0039592729 scopus 로고    scopus 로고
    • From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators
    • Strogatz S, (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143: 1–20.
    • (2000) Physica D , vol.143 , pp. 1-20
    • Strogatz, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.