메뉴 건너뛰기




Volumn 64, Issue , 2013, Pages 499-525

Multivariate statistical analyses for neuroimaging data

Author keywords

effective connectivity; functional connectivity; multivariate; network

Indexed keywords


EID: 84872465552     PISSN: 00664308     EISSN: 15452085     Source Type: Book Series    
DOI: 10.1146/annurev-psych-113011-143804     Document Type: Review
Times cited : (178)

References (109)
  • 1
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • DOI 10.1523/JNEUROSCI.3874-05.2006
    • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26:63-72 (Pubitemid 43090914)
    • (2006) Journal of Neuroscience , vol.26 , Issue.1 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 2
    • 0024599599 scopus 로고
    • Dynamics of neuronal firing correlation: Modulation of effective connectivity
    • Aertsen A, Gerstein G, Habib M, Palm G. 1989. Dynamics of neuronal firing correlation: modulation of "effective connectivity. " J. Neurophysiol. 61:900-17
    • (1989) J. Neurophysiol , vol.61 , pp. 900-917
    • Aertsen, A.1    Gerstein, G.2    Habib, M.3    Palm, G.4
  • 3
    • 0028189162 scopus 로고
    • Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: A principal component approach to modeling brain function in disease
    • Alexander G, Moeller J. 1994. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: A principal component approach to modeling brain function in disease. Hum. Brain Mapp. 2:79-94 (Pubitemid 124000443)
    • (1994) Human Brain Mapping , vol.2 , Issue.1-2 , pp. 79-94
    • Alexander, G.E.1    Moeller, J.R.2
  • 4
  • 6
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • Beckmann C, Smith S. 2004. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Image 23:137-52
    • (2004) IEEE Trans. Med. Image , vol.23 , pp. 137-152
    • Beckmann, C.1    Smith, S.2
  • 7
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for multisubject FMRI analysis
    • DOI 10.1016/j.neuroimage.2004.10.043
    • Beckmann C, Smith S. 2005. Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage 25:294-311 (Pubitemid 40289157)
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 294-311
    • Beckmann, C.F.1    Smith, S.M.2
  • 8
    • 0001309598 scopus 로고
    • Sample size and Bentler and Bonett's nonnormed fit index
    • Bollen K. 1986. Sample size and Bentler and Bonett's nonnormed fit index. Psychometrika 51:375-77
    • (1986) Psychometrika , vol.51 , pp. 375-377
    • Bollen, K.1
  • 9
    • 0003426380 scopus 로고
    • Partial least squares: A dose-response model for measurement in the behavioral and brain sciences
    • Bookstein F. 1994. Partial least squares: A dose-response model for measurement in the behavioral and brain sciences. Psycoloquy 5(23):1
    • (1994) Psycoloquy , vol.5 , Issue.23 , pp. 1
    • Bookstein, F.1
  • 10
    • 34548125774 scopus 로고    scopus 로고
    • Neuronal dynamics and brain connectivity
    • Breakspear M, Jirsa V. 2007. Neuronal dynamics and brain connectivity. See Jirsa &McIntosh 2007, pp. 3-64
    • (2007) See Jirsa &mcIntosh , pp. 3-64
    • Breakspear, M.1    Jirsa, V.2
  • 11
    • 34548131640 scopus 로고    scopus 로고
    • The role of neural context in large-scale neurocognitive network operations
    • Bressler S, McIntosh A. 2007. The role of neural context in large-scale neurocognitive network operations. See Jirsa & McIntosh 2007, pp. 403-19
    • (2007) See Jirsa & McIntosh 2007 , pp. 403-419
    • Bressler, S.1    McIntosh, A.2
  • 12
    • 0034113510 scopus 로고    scopus 로고
    • How good is good enough in path analysis of fMRI data?
    • DOI 10.1006/nimg.2000.0544
    • Bullmore E, Horwitz B, Honey G, Brammer M, Williams S, Sharma T. 2000. How good is good enough in path analysis of fMRI data? NeuroImage 11:289-301 (Pubitemid 30194708)
    • (2000) NeuroImage , vol.11 , Issue.4 , pp. 289-301
    • Bullmore, E.1    Horwitz, B.2    Honey, G.3    Brammer, M.4    Williams, S.5    Sharma, T.6
  • 13
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186-98
    • (2009) Nat. Rev. Neurosci , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 14
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: The balloon model
    • DOI 10.1002/mrm.1910390602
    • Buxton R, Wong E, Frank L. 1998. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn. Reson. Med. 39:855-64 (Pubitemid 28237743)
    • (1998) Magnetic Resonance in Medicine , vol.39 , Issue.6 , pp. 855-864
    • Buxton, R.B.1    Wong, E.C.2    Frank, L.R.3
  • 15
    • 0035172708 scopus 로고    scopus 로고
    • FMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis
    • DOI 10.1006/nimg.2001.0921
    • Calhoun V, Adali T, McGinty V, Pekar J, Watson T, Pearlson G. 2001a. fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis. NeuroImage 14:1080-88 (Pubitemid 33049849)
    • (2001) NeuroImage , vol.14 , Issue.5 , pp. 1080-1088
    • Calhoun, V.D.1    Adali, T.2    McGinty, V.B.3    Pekar, J.J.4    Watson, T.D.5    Pearlson, G.D.6
  • 16
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • DOI 10.1002/hbm.1048
    • Calhoun V, Adali T, Pearlson G, Pekar J. 2001b. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14:140-51 (Pubitemid 33032347)
    • (2001) Human Brain Mapping , vol.14 , Issue.3 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 17
    • 0035033714 scopus 로고    scopus 로고
    • Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
    • DOI 10.1002/hbm.1024
    • Calhoun V, Adali T, Pearlson G, Pekar J. 2001c. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 13:43-53 (Pubitemid 32374513)
    • (2001) Human Brain Mapping , vol.13 , Issue.1 , pp. 43-53
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 18
    • 44949159748 scopus 로고    scopus 로고
    • Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks
    • DOI 10.1002/hbm.20581
    • Calhoun V, Kiehl K, Pearlson G. 2008. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum. Brain Mapp. 29:828-38 (Pubitemid 351813084)
    • (2008) Human Brain Mapping , vol.29 , Issue.7 , pp. 828-838
    • Calhoun, V.D.1    Kiehl, K.A.2    Pearlson, G.D.3
  • 19
    • 0000116015 scopus 로고
    • The geometry of canonical variate analysis
    • Campbell N, Atchley W. 1981. The geometry of canonical variate analysis. Syst. Zool. 30:268-80
    • (1981) Syst. Zool , vol.30 , pp. 268-280
    • Campbell, N.1    Atchley, W.2
  • 20
    • 34547651334 scopus 로고    scopus 로고
    • Two distinct functional networks for successful resolution of proactive interference
    • Caplan J, McIntosh A, De Rosa E. 2007. Two distinct functional networks for successful resolution of proactive interference. Cereb. Cortex 17:1650-63
    • (2007) Cereb. Cortex , vol.17 , pp. 1650-1663
    • Caplan, J.1    McIntosh, A.2    De Rosa, E.3
  • 21
    • 0037765189 scopus 로고    scopus 로고
    • Patterns of activity in the categorical representations of objects
    • DOI 10.1162/089892903322307429
    • Carlson T, Schrater P, He S. 2003. Patterns of activity in the categorical representations of objects. J. Cogn. Neurosci. 15:704-17 (Pubitemid 36871884)
    • (2003) Journal of Cognitive Neuroscience , vol.15 , Issue.5 , pp. 704-717
    • Carlson, T.A.1    Schrater, P.2    He, S.3
  • 23
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: A critical review of the biophysical and statistical foundations
    • Daunizeau J, David O, Stephan K. 2009. Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage 58:312-22
    • (2009) NeuroImage , vol.58 , pp. 312-322
    • Daunizeau, J.1    David, O.2    Stephan, K.3
  • 26
    • 48749104044 scopus 로고    scopus 로고
    • Modality-independent processes in cued motor preparation revealed by cortical potentials
    • Diaconescu A, Kovacevic N, McIntosh A. 2008. Modality-independent processes in cued motor preparation revealed by cortical potentials. NeuroImage 42:1255-65
    • (2008) NeuroImage , vol.42 , pp. 1255-1265
    • Diaconescu, A.1    Kovacevic, N.2    McIntosh, A.3
  • 27
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • Eckart C, Young G. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1:211-18
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 29
    • 84964203940 scopus 로고
    • Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
    • Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1:54-75
    • (1986) Stat. Sci , vol.1 , pp. 54-75
    • Efron, B.1    Tibshirani, R.2
  • 30
    • 0030702009 scopus 로고    scopus 로고
    • Psychophysiological and modulatory interactions in neuroimaging
    • DOI 10.1006/nimg.1997.0291
    • Friston K, Buechel C, Fink G, Morris J, Rolls E, Dolan R. 1997. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6:218-29 (Pubitemid 27488453)
    • (1997) NeuroImage , vol.6 , Issue.3 , pp. 218-229
    • Friston, K.J.1    Buechel, C.2    Fink, G.R.3    Morris, J.4    Rolls, E.5    Dolan, R.J.6
  • 31
    • 77954195285 scopus 로고    scopus 로고
    • Computational and dynamic models in neuroimaging
    • Friston K, Dolan R. 2010. Computational and dynamic models in neuroimaging. NeuroImage 52:752-65
    • (2010) NeuroImage , vol.52 , pp. 752-765
    • Friston, K.1    Dolan, R.2
  • 33
    • 0029029430 scopus 로고
    • Characterizing dynamic brain responses with fMRI: A multivariate approach
    • Friston K, Frith C, Frackowiak R, Turner R. 1995. Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage 2:166-72
    • (1995) NeuroImage , vol.2 , pp. 166-172
    • Friston, K.1    Frith, C.2    Frackowiak, R.3    Turner, R.4
  • 35
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • DOI 10.1016/S1053-8119(03)00202-7
    • Friston K, Harrison L, Penny W. 2003. Dynamic causal modelling. NeuroImage 19:1273-302 (Pubitemid 37025831)
    • (2003) NeuroImage , vol.19 , Issue.4 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 37
    • 65649088304 scopus 로고    scopus 로고
    • Dynamic causal modeling of the response to frequency deviants
    • Garrido M, Kilner J, Kiebel S, Friston K. 2009. Dynamic causal modeling of the response to frequency deviants. J. Neurophysiol. 101:2620-31
    • (2009) J. Neurophysiol , vol.101 , pp. 2620-2631
    • Garrido, M.1    Kilner, J.2    Kiebel, S.3    Friston, K.4
  • 38
    • 34250216656 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked potentials: A reproducibility study
    • DOI 10.1016/j.neuroimage.2007.03.014, PII S1053811907002273
    • Garrido M, Kilner J, Kiebel S, Stephan K, Friston K. 2007. Dynamic causal modelling of evoked potentials: A reproducibility study. NeuroImage 36:571-80 (Pubitemid 46907636)
    • (2007) NeuroImage , vol.36 , Issue.3 , pp. 571-580
    • Garrido, M.I.1    Kilner, J.M.2    Kiebel, S.J.3    Stephan, K.E.4    Friston, K.J.5
  • 39
    • 1042301100 scopus 로고    scopus 로고
    • Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
    • DOI 10.1016/j.mri.2003.08.026
    • Goebel R, Roebroeck A, Kim D, Formisano E. 2003. Investigating directed cortical interactions in timeresolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 21:1251-61 (Pubitemid 38199731)
    • (2003) Magnetic Resonance Imaging , vol.21 , Issue.10 , pp. 1251-1261
    • Goebel, R.1    Roebroeck, A.2    Kim, D.-S.3    Formisano, E.4
  • 40
    • 59749085044 scopus 로고    scopus 로고
    • Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
    • Gong G, He Y, Concha L, Lebel C, Gross D, et al. 2009. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 19:524-36
    • (2009) Cereb. Cortex , vol.19 , pp. 524-536
    • Gong, G.1    He, Y.2    Concha, L.3    Lebel, C.4    Gross, D.5
  • 41
    • 77950612237 scopus 로고    scopus 로고
    • A multivariate analysis of agerelated differences in default mode and task-positive networks across multiple cognitive domains
    • Grady C, Protzner A, Kovacevic N, Strother S, Afshin-Pour B, et al. 2010. A multivariate analysis of agerelated differences in default mode and task-positive networks across multiple cognitive domains. Cereb. Cortex 20:1432-47
    • (2010) Cereb. Cortex , vol.20 , pp. 1432-1447
    • Grady, C.1    Protzner, A.2    Kovacevic, N.3    Strother, S.4    Afshin-Pour, B.5
  • 42
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424-38
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.1
  • 45
    • 17844361888 scopus 로고    scopus 로고
    • Predicting the orientation of invisible stimuli from activity in human primary visual cortex
    • DOI 10.1038/nn1445
    • Haynes J, Rees G. 2005. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8:686-91 (Pubitemid 40594212)
    • (2005) Nature Neuroscience , vol.8 , Issue.5 , pp. 686-691
    • Haynes, J.-D.1    Rees, G.2
  • 46
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling H. 1936. Relations between two sets of variates. Biometrika 28:321-77
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 52
    • 0035433274 scopus 로고    scopus 로고
    • Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance
    • DOI 10.1007/s004220000235
    • Kaminski M, Ding M, Truccolo W, Bressler S. 2001. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85:145-57 (Pubitemid 33605209)
    • (2001) Biological Cybernetics , vol.85 , Issue.2 , pp. 145-157
    • Kaminski, M.1    Ding, M.2    Truccolo, W.A.3    Bressler, S.L.4
  • 54
    • 33646137121 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization
    • Kiebel S, David O, Friston K. 2006. Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage 30:1273-84
    • (2006) NeuroImage , vol.30 , pp. 1273-1284
    • Kiebel, S.1    David, O.2    Friston, K.3
  • 55
    • 6344245918 scopus 로고    scopus 로고
    • Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database
    • DOI 10.1385/NI:2:2:127
    • K? otter R. 2004. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127-44 (Pubitemid 41214094)
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 127-144
    • Kotter, R.1
  • 56
    • 33947716052 scopus 로고    scopus 로고
    • Groupwise independent component decomposition of EEG data and partial least square analysis
    • DOI 10.1016/j.neuroimage.2007.01.016, PII S1053811907000407
    • Kovacevic N, McIntosh A. 2007. Groupwise independent component decomposition of EEG data and partial least square analysis. NeuroImage 35:1103-12 (Pubitemid 46507824)
    • (2007) NeuroImage , vol.35 , Issue.3 , pp. 1103-1112
    • Kovacevic, N.1    McIntosh, A.R.2
  • 57
    • 79955023796 scopus 로고    scopus 로고
    • Partial least squares (PLS) methods for neuroimaging: A tutorial and review
    • Krishnan A, Williams L, McIntosh A, Abdi H. 2010. Partial least squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage 56:455-75
    • (2010) NeuroImage , vol.56 , pp. 455-475
    • Krishnan, A.1    Williams, L.2    McIntosh, A.3    Abdi, H.4
  • 58
    • 0035324510 scopus 로고    scopus 로고
    • 15o]-water PET brain images with prediction error selection of smoothness and regularization hyperparameters
    • DOI 10.1109/42.925291, PII S0278006201044111
    • Kustra R, Strother S. 2001. Penalized discriminant analysis of [15O]-water PET brain images with prediction error selection of smoothness and regularization hyperparameters. IEEE Trans. Med. Imaging 20:376-87 (Pubitemid 32576601)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.5 , pp. 376-387
    • Kustra, R.1    Strother, S.2
  • 59
    • 0035003914 scopus 로고    scopus 로고
    • Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares
    • DOI 10.1017/S0048577201991681
    • Lobaugh N, West R, McIntosh A. 2001. Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares. Psychophysiology 38:517-30 (Pubitemid 32422296)
    • (2001) Psychophysiology , vol.38 , Issue.3 , pp. 517-530
    • Lobaugh, N.J.1    West, R.2    McIntosh, A.R.3
  • 64
    • 36048949958 scopus 로고    scopus 로고
    • Dynamic causal modelling for fMRI: A two-state model
    • DOI 10.1016/j.neuroimage.2007.08.019, PII S1053811907007070
    • Marreiros A, Kiebel S, Friston K. 2008. Dynamic causal modelling for fMRI: A two-state model. NeuroImage 39:269-78 (Pubitemid 350102199)
    • (2008) NeuroImage , vol.39 , Issue.1 , pp. 269-278
    • Marreiros, A.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 65
    • 85004805728 scopus 로고
    • Some algebraic properties of the reticular actionmodel for moment structures
    • McArdle J, McDonald R. 1984. Some algebraic properties of the reticular actionmodel for moment structures. Br. J. Math. Stat. Psychol. 37:234-51
    • (1984) Br. J. Math. Stat. Psychol , vol.37 , pp. 234-251
    • McArdle, J.1    McDonald, R.2
  • 66
    • 0032452098 scopus 로고    scopus 로고
    • Understanding neural interactions in learning and memory using functional neuroimaging
    • McIntosh A. 1998. Understanding neural interactions in learning andmemory using functional neuroimaging. Ann. N. Y. Acad. Sci. 855:556-71 (Pubitemid 29110037)
    • (1998) Annals of the New York Academy of Sciences , vol.855 , pp. 556-571
    • McIntosh, A.R.1
  • 67
    • 0034324960 scopus 로고    scopus 로고
    • Towards a network theory of cognition
    • McIntosh A. 2000. Towards a network theory of cognition. Neural Netw. 13:861-70
    • (2000) Neural Netw , vol.13 , pp. 861-870
    • McIntosh, A.1
  • 68
    • 0029941179 scopus 로고    scopus 로고
    • Spatial pattern analysis of functional brain images using partial least squares
    • DOI 10.1006/nimg.1996.0016
    • McIntosh A, Bookstein F, Haxby J, Grady C. 1996. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3:143-57 (Pubitemid 26199050)
    • (1996) NeuroImage , vol.3 , Issue.3 , pp. 143-157
    • McIntosh, A.R.1    Bookstein, F.L.2    Haxby, J.V.3    Grady, C.L.4
  • 69
    • 5644273771 scopus 로고    scopus 로고
    • Spatiotemporal analysis of event-related fMRI data using partial least squares
    • DOI 10.1016/j.neuroimage.2004.05.018, PII S1053811904002976
    • McIntosh A, Chau W, Protzner A. 2004. Spatiotemporal analysis of event-related fMRI data using partial least squares. NeuroImage 23:764-75 (Pubitemid 39370627)
    • (2004) NeuroImage , vol.23 , Issue.2 , pp. 764-775
    • McIntosh, A.R.1    Chau, W.K.2    Protzner, A.B.3
  • 70
    • 0025907222 scopus 로고
    • Structural modeling of functional neural pathways mapped with 2-deoxyglucose: Effects of acoustic startle habituation on the auditory system
    • McIntosh A, Gonzalez-Lima F. 1991. Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effects of acoustic startle habituation on the auditory system. Brain Res. 547:295-302
    • (1991) Brain Res , vol.547 , pp. 295-302
    • McIntosh, A.1    Gonzalez-Lima, F.2
  • 71
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • McIntosh A, Gonzalez-Lima F. 1994. Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 2:2-22 (Pubitemid 124000439)
    • (1994) Human Brain Mapping , vol.2 , Issue.1-2 , pp. 2-22
    • McIntosh, A.R.1    Gonzalez-Lima, F.2
  • 73
    • 7044249748 scopus 로고    scopus 로고
    • Partial least squares analysis of neuroimaging data: Applications and advances
    • DOI 10.1016/j.neuroimage.2004.07.020, PII S1053811904003866, Mathematics in Brain Imaging
    • McIntosh A, Lobaugh N. 2004. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage 23:S250-63 (Pubitemid 39421723)
    • (2004) NeuroImage , vol.23 , Issue.SUPPL. 1
    • McIntosh, A.R.1    Lobaugh, N.J.2
  • 74
    • 0242404415 scopus 로고    scopus 로고
    • Independent component analysis of functional MRI: What is signal and what is noise?
    • DOI 10.1016/j.conb.2003.09.012
    • McKeown M, Hansen L, Sejnowski T. 2003. Independent component analysis of functional MRI: What is signal and what is noise? Curr. Opin. Neurobiol. 13:620-29 (Pubitemid 37431192)
    • (2003) Current Opinion in Neurobiology , vol.13 , Issue.5 , pp. 620-629
    • McKeown, M.J.1    Hansen, L.K.2    Sejnowsk, T.J.3
  • 77
    • 84855719762 scopus 로고    scopus 로고
    • Knowledge-driven contrast gain control is characterized by two distinct electrocortical markers
    • Misic B, Schneider B, McIntosh A. 2010. Knowledge-driven contrast gain control is characterized by two distinct electrocortical markers. Front. Hum. Neurosci. 3:78
    • (2010) Front. Hum. Neurosci , vol.3 , pp. 78
    • Misic, B.1    Schneider, B.2    McIntosh, A.3
  • 78
    • 0025969753 scopus 로고
    • A regional covariance approach to the analysis of functional patterns in positron emission tomographic data
    • Moeller J, Strother S. 1991. A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J. Cerebr. Blood Flow Metab. 11:A121-35
    • (1991) J. Cerebr. Blood Flow Metab , vol.11
    • Moeller, J.1    Strother, S.2
  • 79
    • 0023424904 scopus 로고
    • Scaled subprofile model: A statistical approach to the analysis of functional patterns in positron emission tomographic data
    • Moeller J, Strother S, Sidtis J, Rottenberg D. 1987. Scaled subprofile model: A statistical approach to the analysis of functional patterns in positron emission tomographic data. J. Cerebr. Blood Flow Metab. 7:649-58
    • (1987) J. Cerebr. Blood Flow Metab , vol.7 , pp. 649-658
    • Moeller, J.1    Strother, S.2    Sidtis, J.3    Rottenberg, D.4
  • 80
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading: Multi-voxel pattern analysis of fMRI data
    • DOI 10.1016/j.tics.2006.07.005, PII S1364661306001847
    • Norman K, Polyn S, Detre G, Haxby J. 2006. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10:424-30 (Pubitemid 44308461)
    • (2006) Trends in Cognitive Sciences , vol.10 , Issue.9 , pp. 424-430
    • Norman, K.A.1    Polyn, S.M.2    Detre, G.J.3    Haxby, J.V.4
  • 81
    • 0029877071 scopus 로고    scopus 로고
    • Network analysis of positron emission tomography regional cerebral blood flow data: Ensemble inhibition during episodic memory retrieval
    • Nyberg L, McIntosh A, Cabeza R, Nilsson L, Houle S, et al. 1996. Network analysis of positron emission tomography regional cerebral blood flow data: ensemble inhibition during episodic memory retrieval. J. Neurosci. 16:3753-59 (Pubitemid 26149511)
    • (1996) Journal of Neuroscience , vol.16 , Issue.11 , pp. 3753-3759
    • Nyberg, L.1    Mclntosh, A.R.2    Cabeza, R.3    Nilsson, L.-G.4    Houle, S.5    Habib, R.6    Tulving, E.7
  • 82
    • 23044481152 scopus 로고    scopus 로고
    • Frontal midline EEG dynamics during working memory
    • DOI 10.1016/j.neuroimage.2005.04.014, PII S1053811905002673
    • Onton J, Delorme A, Makeig S. 2005. Frontal midline EEG dynamics during working memory. NeuroImage 27:341-56 (Pubitemid 41074836)
    • (2005) NeuroImage , vol.27 , Issue.2 , pp. 341-356
    • Onton, J.1    Delorme, A.2    Makeig, S.3
  • 83
    • 33747894287 scopus 로고    scopus 로고
    • Imaging human EEG dynamics using independent component analysis
    • DOI 10.1016/j.neubiorev.2006.06.007, PII S0149763406000509, Methodological and Conceptual Advances in the Study of Brain-Behavior Dynamics: A Multivariate Lifespan Perspective
    • Onton J, Westerfield M, Townsend J, Makeig S. 2006. Imaging human EEG dynamics using independent component analysis. Neurosci. Biobehav. Rev. 30:808-22 (Pubitemid 44292287)
    • (2006) Neuroscience and Biobehavioral Reviews , vol.30 , Issue.6 , pp. 808-822
    • Onton, J.1    Westerfield, M.2    Townsend, J.3    Makeig, S.4
  • 84
    • 35748950120 scopus 로고    scopus 로고
    • Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data
    • DOI 10.1162/jocn.2007.19.11.1735
    • O'Toole A, Jiang F, Abdi H, Ṕenard N, Dunlop J, Parent M. 2007. Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. J. Cogn. Neurosci. 19:1735-52 (Pubitemid 350043418)
    • (2007) Journal of Cognitive Neuroscience , vol.19 , Issue.11 , pp. 1735-1752
    • O'Toole, A.J.1    Jiang, F.2    Abdi, H.3    Penard, N.4    Dunlop, J.P.5    Parent, M.A.6
  • 85
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. 1901. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2:559-72
    • (1901) Philos. Mag , vol.2 , pp. 559-572
    • Pearson, K.1
  • 86
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Pereira F, Mitchell T, Botvinick M. 2009. Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45:S199-209
    • (2009) NeuroImage , vol.45
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 88
    • 33751517490 scopus 로고    scopus 로고
    • Testing effective connectivity changes with structural equation modeling: What does a bad model tell us?
    • DOI 10.1002/hbm.20233
    • Protzner A, McIntosh A. 2006. Testing effective connectivity changes with structural equation modeling: What does a bad model tell us? Hum. Brain Mapp. 27:935-47 (Pubitemid 44837496)
    • (2006) Human Brain Mapping , vol.27 , Issue.12 , pp. 935-947
    • Protzner, A.B.1    McIntosh, A.R.2
  • 90
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • DOI 10.1016/j.neuroimage.2004.11.017
    • Roebroeck A, Formisano E, Goebel R. 2005. Mapping directed influence over the brain usingGranger causality and f MRI. NeuroImage 25:230-42 (Pubitemid 40289151)
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 91
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059-69
    • (2010) NeuroImage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 92
    • 1542319069 scopus 로고    scopus 로고
    • Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data
    • DOI 10.1002/jmri.20009
    • Schmithorst V, Holland S. 2004. Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. J. Magn. Reson. Imaging 19:365-68 (Pubitemid 38294778)
    • (2004) Journal of Magnetic Resonance Imaging , vol.19 , Issue.3 , pp. 365-368
    • Schmithorst, V.J.1    Holland, S.K.2
  • 93
    • 12944275674 scopus 로고    scopus 로고
    • Measuring information transfer
    • Schreiber T. 2000. Measuring information transfer. Phys. Rev. Lett. 85:461-64
    • (2000) Phys. Rev. Lett , vol.85 , pp. 461-464
    • Schreiber, T.1
  • 94
    • 0033953083 scopus 로고    scopus 로고
    • Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices
    • Sporns O, Tononi G, Edelman G. 2000. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10:127-41 (Pubitemid 30078735)
    • (2000) Cerebral Cortex , vol.10 , Issue.2 , pp. 127-141
    • Sporns, O.1    Tononi, G.2    Edelman, G.M.3
  • 95
    • 0347914619 scopus 로고    scopus 로고
    • Functional connectivity patterns of human magnetoencephalographic recordings: A 'small-world' network?
    • DOI 10.1016/j.neulet.2003.10.063
    • Stam C. 2004. Functional connectivity patterns of human magnetoencephalographic recordings: A "smallworld" network? Neurosci. Lett. 355:25-28 (Pubitemid 38077176)
    • (2004) Neuroscience Letters , vol.355 , Issue.1-2 , pp. 25-28
    • Stam, C.J.1
  • 96
    • 33845742477 scopus 로고    scopus 로고
    • Small-world networks and functional connectivity in Alzheimer's disease
    • DOI 10.1093/cercor/bhj127
    • Stam C, Jones B, Nolte G, Breakspear M, Scheltens P. 2007. Small-world networks and functional connectivity in Alzheimer's disease. Cereb. Cortex 17:92-99 (Pubitemid 44973898)
    • (2007) Cerebral Cortex , vol.17 , Issue.1 , pp. 92-99
    • Stam, C.J.1    Jones, B.F.2    Nolte, G.3    Breakspear, M.4    Scheltens, Ph.5
  • 97
    • 35148879706 scopus 로고    scopus 로고
    • Graph theoretical analysis of complex networks in the brain
    • Stam C, Reijneveld J. 2007. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1:1-19
    • (2007) Nonlinear Biomed. Phys , vol.1 , pp. 1-19
    • Stam, C.1    Reijneveld, J.2
  • 99
    • 0037777463 scopus 로고    scopus 로고
    • Lateralized cognitive processes and lateralized task control in the human brain
    • DOI 10.1126/science.1086025
    • Stephan K, Marshall J, Friston K, Rowe J, Ritzl A, et al. 2003. Lateralized cognitive processes and lateralized task control in the human brain. Science 301:384-86 (Pubitemid 36877076)
    • (2003) Science , vol.301 , Issue.5631 , pp. 384-386
    • Stephan, K.E.1    Marshall, J.C.2    Friston, K.J.3    Rowe, J.B.4    Ritzl, A.5    Zilles, K.6    Fink, G.R.7
  • 103
    • 0029115831 scopus 로고
    • Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I "functional connectivity" of the human motor system studied with [15O] water PET
    • Strother S, Anderson J, Schaper K, Sidtis J, Liow J, et al. 1995. Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. "Functional connectivity" of the human motor system studied with [15O] water PET. J. Cerebr. Blood Flow Metab. 15:738-53
    • (1995) J. Cerebr. Blood Flow Metab , vol.15 , pp. 738-753
    • Strother, S.1    Anderson, J.2    Schaper, K.3    Sidtis, J.4    Liow, J.5
  • 104
  • 105
    • 0036430903 scopus 로고    scopus 로고
    • Noise reduction in BOLD-based fMRI using component analysis
    • DOI 10.1006/nimg.2002.1200
    • Thomas C, Harshman R, Menon R. 2002. Noise reduction in bold-based fMRI using component analysis. NeuroImage 17:1521-37 (Pubitemid 35333871)
    • (2002) NeuroImage , vol.17 , Issue.3 , pp. 1521-1537
    • Thomas, C.G.1    Harshman, R.A.2    Menon, R.S.3
  • 106
    • 70349233762 scopus 로고    scopus 로고
    • Confounding effects of indirect connections on causality estimation
    • Vakorin V, Krakovska O, McIntosh A. 2009. Confounding effects of indirect connections on causality estimation. J. Neurosci. Methods 184:152-60
    • (2009) J. Neurosci. Methods , vol.184 , pp. 152-160
    • Vakorin, V.1    Krakovska, O.2    McIntosh, A.3
  • 107
    • 0001877951 scopus 로고
    • Soft modelling: The basic design and some extensions
    • ed. HWold, K Joreskog Amsterdam North Holland
    • Wold H. 1982. Soft modelling: The basic design and some extensions. In Systems Under Indirect Observation: Causality-Structure-Prediction, ed. HWold, K Joreskog, 2:1-54. Amsterdam: North Holland
    • (1982) Systems under Indirect Observation: Causality-Structure-Prediction , vol.2 , pp. 1-54
    • Wold, H.1
  • 108
    • 0031279853 scopus 로고    scopus 로고
    • Characterizing the response of PET and fMRI data using multivariate linear models
    • DOI 10.1006/nimg.1997.0294
    • Worsley K, Poline J, Friston K, Evans A. 1997. Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage 6:305-19 (Pubitemid 28018719)
    • (1997) NeuroImage , vol.6 , Issue.4 , pp. 305-319
    • Worsley, K.J.1    Poline, J.-B.2    Friston, K.J.3    Evans, A.C.4
  • 109
    • 77349095673 scopus 로고    scopus 로고
    • Whole-brain anatomical networks: Does the choice of nodes matter?
    • Zalesky A, Fornito A, Harding I, Cocchi L, Yucel M, et al. 2010. Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage 50:970-83
    • (2010) NeuroImage , vol.50 , pp. 970-983
    • Zalesky, A.1    Fornito, A.2    Harding, I.3    Cocchi, L.4    Yucel, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.