메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Improving microRNA target prediction with gene expression profiles

Author keywords

Biological context; Gene expression profiles; MicroRNA perturbation experiments; MicroRNA target prediction; Support Vector Machine

Indexed keywords

MICRORNA; MESSENGER RNA; TRANSCRIPTOME;

EID: 84969263224     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/s12864-016-2695-1     Document Type: Article
Times cited : (21)

References (59)
  • 1
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-33.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 2
    • 84862778053 scopus 로고    scopus 로고
    • Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish
    • Bazzini AA, Lee MT, Giraldez AJ. Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish. Science. 2012;336:233-7.
    • (2012) Science , vol.336 , pp. 233-237
    • Bazzini, A.A.1    Lee, M.T.2    Giraldez, A.J.3
  • 3
    • 84891818318 scopus 로고    scopus 로고
    • miRBase: Annotating high confidence microRNAs using deep sequencing data
    • Kozomara A, Griffiths-Jones S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):68-73.
    • (2014) Nucleic Acids Res , vol.42 , Issue.DATABASE ISSUE , pp. 68-73
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 5
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15-20.
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 9
    • 80455154984 scopus 로고    scopus 로고
    • Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs
    • Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18:1139-46.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 1139-1146
    • Garcia, D.M.1    Baek, D.2    Shin, C.3    Bell, G.W.4    Grimson, A.5    Bartel, D.P.6
  • 11
    • 84874646362 scopus 로고    scopus 로고
    • A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets
    • Khorshid M, Hausser J, Zavolan M, van Nimwegen E. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods. 2013;10:253-5.
    • (2013) Nat Methods , vol.10 , pp. 253-255
    • Khorshid, M.1    Hausser, J.2    Zavolan, M.3    Nimwegen, E.4
  • 12
    • 84930275224 scopus 로고    scopus 로고
    • Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G
    • Gumienny R, Zavolan M. Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res. 2015;43:1380-91.
    • (2015) Nucleic Acids Res , vol.43 , pp. 1380-1391
    • Gumienny, R.1    Zavolan, M.2
  • 14
    • 66349119276 scopus 로고    scopus 로고
    • Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data
    • Wang Y-P, Li K-B. Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics. 2009;10:218.
    • (2009) BMC Genomics , vol.10 , pp. 218
    • Wang, Y.-P.1    Li, K.-B.2
  • 15
    • 84904730206 scopus 로고    scopus 로고
    • Integrative Approaches for microRNA Target Prediction: Combining Sequence Information and the Paired mRNA and miRNA Expression Profiles
    • Naifang S, Minping Q, Minghua D. Integrative Approaches for microRNA Target Prediction: Combining Sequence Information and the Paired mRNA and miRNA Expression Profiles. Curr Bioinform. 2013;8:37-45.
    • (2013) Curr Bioinform , vol.8 , pp. 37-45
    • Naifang, S.1    Minping, Q.2    Minghua, D.3
  • 18
    • 84883157920 scopus 로고    scopus 로고
    • BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles
    • Radfar H, Wong W, Morris Q. BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles. BMC Genomics. 2013;14:592.
    • (2013) BMC Genomics , vol.14 , pp. 592
    • Radfar, H.1    Wong, W.2    Morris, Q.3
  • 19
    • 84897692557 scopus 로고    scopus 로고
    • A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information
    • Li Y, Goldenberg A, Wong K-C, Zhang Z. A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information. Bioinformatics. 2014;30:621-8.
    • (2014) Bioinformatics , vol.30 , pp. 621-628
    • Li, Y.1    Goldenberg, A.2    Wong, K.-C.3    Zhang, Z.4
  • 21
    • 57049175013 scopus 로고    scopus 로고
    • Detecting microRNA binding and siRNA off-target effects from expression data
    • van Dongen S, Abreu-Goodger C, Enright AJ. Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods. 2008;5:1023-5.
    • (2008) Nat Methods , vol.5 , pp. 1023-1025
    • Dongen, S.1    Abreu-Goodger, C.2    Enright, A.J.3
  • 22
    • 76249119007 scopus 로고    scopus 로고
    • Opposing microRNA families regulate self-renewal in mouse embryonic stem cells
    • Melton C, Judson RL, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010;463:621-6.
    • (2010) Nature , vol.463 , pp. 621-626
    • Melton, C.1    Judson, R.L.2    Blelloch, R.3
  • 31
    • 84969155105 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R: A Language and Environment for Statistical Computing [ http://www.r-project.org/ ]
  • 33
    • 1342288026 scopus 로고    scopus 로고
    • affy--analysis of Affymetrix GeneChip data at the probe level
    • Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307-15.
    • (2004) Bioinformatics , vol.20 , pp. 307-315
    • Gautier, L.1    Cope, L.2    Bolstad, B.M.3    Irizarry, R.A.4
  • 34
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:1-25.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 1-25
    • Smyth, G.K.1
  • 35
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes C, Vapnik V. Support-Vector Networks. Mach Learn. 1995;20:273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 37
    • 0018079655 scopus 로고
    • Basic Principles of ROC Analysis
    • Metz CE. Basic Principles of ROC Analysis. Semin Nucl Med. 1978;8:283-98.
    • (1978) Semin Nucl Med , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 38
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 40
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27:861-74.
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 41
    • 84969222589 scopus 로고    scopus 로고
    • Using the SRA Toolkit to convert.sra files into other formats [ http://www.ncbi.nlm.nih.gov/books/NBK158900/ ]
  • 42
    • 84883492771 scopus 로고    scopus 로고
    • Kraken: a set of tools for quality control and analysis of high-throughput sequence data
    • Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods. 2013;63:41-9.
    • (2013) Methods , vol.63 , pp. 41-49
    • Davis, M.P.1    Dongen, S.2    Abreu-Goodger, C.3    Bartonicek, N.4    Enright, A.J.5
  • 44
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-9.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 46
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 50
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 53
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57.
    • (2009) Nat Protoc , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 54
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
    • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1-13.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1-13
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 57
    • 78751660177 scopus 로고    scopus 로고
    • Pervasive roles of microRNAs in cardiovascular biology
    • Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336-42.
    • (2011) Nature , vol.469 , pp. 336-342
    • Small, E.M.1    Olson, E.N.2
  • 58
    • 78651511540 scopus 로고    scopus 로고
    • miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis
    • Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 2011;25:125-30.
    • (2011) Genes Dev , vol.25 , pp. 125-130
    • Kole, A.J.1    Swahari, V.2    Hammond, S.M.3    Deshmukh, M.4
  • 59
    • 84856250463 scopus 로고    scopus 로고
    • Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury
    • Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, Shi J, Jia L. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res. 2012;216:225-30.
    • (2012) Exp Brain Res , vol.216 , pp. 225-230
    • Shi, G.1    Liu, Y.2    Liu, T.3    Yan, W.4    Liu, X.5    Wang, Y.6    Shi, J.7    Jia, L.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.