메뉴 건너뛰기




Volumn 8, Issue 1, 2013, Pages 37-45

Integrative approaches for microRNA target prediction: Combining sequence information and the paired mRNA and miRNA expression profiles

Author keywords

Expression profile; Integrative analysis; MiRNA; Target prediction

Indexed keywords

FORECASTING; GENE EXPRESSION REGULATION; MOLECULAR BIOLOGY; RNA;

EID: 84904730206     PISSN: 15748936     EISSN: 2212392X     Source Type: Journal    
DOI: 10.2174/157489313804871614     Document Type: Article
Times cited : (12)

References (56)
  • 1
    • 33144490646 scopus 로고    scopus 로고
    • A microRNA expression signature of human solid tumors defines cancer gene targets
    • Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103(7): 2257-61.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.7 , pp. 2257-2261
    • Volinia, S.1    Calin, G.A.2    Liu, C.G.3
  • 2
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 3
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
    • (2005) Cell , vol.120 , Issue.1 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 4
    • 57049085506 scopus 로고    scopus 로고
    • P53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation
    • Brosh R, Shalgi R, Liran A, et al. P53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 2008; 4.
    • (2008) Mol Syst Biol , pp. 4
    • Brosh, R.1    Shalgi, R.2    Liran, A.3
  • 5
    • 48449084118 scopus 로고    scopus 로고
    • Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells
    • Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134(3): 521-33.
    • (2008) Cell , vol.134 , Issue.3 , pp. 521-533
    • Marson, A.1    Levine, S.S.2    Cole, M.F.3
  • 6
    • 33750370444 scopus 로고    scopus 로고
    • MicroRNA signatures in human cancers
    • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-66.
    • (2006) Nat Rev Cancer , vol.6 , pp. 857-866
    • Calin, G.A.1    Croce, C.M.2
  • 7
    • 34249279050 scopus 로고    scopus 로고
    • MicroRNA-133 controls cardiac hypertrophy
    • Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13(5): 613-8.
    • (2007) Nat Med , vol.13 , Issue.5 , pp. 613-618
    • Care, A.1    Catalucci, D.2    Felicetti, F.3
  • 8
    • 49749107841 scopus 로고    scopus 로고
    • Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth
    • Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008; 3(7): e2557.
    • (2008) Plos One , vol.3 , Issue.7
    • Wang, X.1    Tang, S.2    Le, S.Y.3
  • 9
    • 77952340609 scopus 로고    scopus 로고
    • High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2
    • Zhou Y, Chen L, Barlogie B, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA 2010; 107(17): 7904-9.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.17 , pp. 7904-7909
    • Zhou, Y.1    Chen, L.2    Barlogie, B.3
  • 10
    • 79953202455 scopus 로고    scopus 로고
    • Silencing of microRNA families by seed-targeting tiny LNAs
    • Obad S, dos Santos CO, Petri A, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 2011; 43(4): 371-8.
    • (2011) Nat Genet , vol.43 , Issue.4 , pp. 371-378
    • Obad, S.1    Dos Santos, C.O.2    Petri, A.3
  • 11
    • 77949268292 scopus 로고    scopus 로고
    • Computational approaches for microRNA studies: A review
    • Li L, Xu J, Yang D, Tan X, Wang H. Computational approaches for microRNA studies: a review. Mamm Genome 2010; 21(1-2): 1-12.
    • (2010) Mamm Genome , vol.21 , Issue.1-2 , pp. 1-12
    • Li, L.1    Xu, J.2    Yang, D.3    Tan, X.4    Wang, H.5
  • 12
    • 31044444975 scopus 로고    scopus 로고
    • TarBase: A comprehensive database of experimentally supported animal microRNA targets
    • Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: A comprehensive database of experimentally supported animal microRNA targets. Rna 2006; 12(2): 192-7.
    • (2006) Rna , vol.12 , Issue.2 , pp. 192-197
    • Sethupathy, P.1    Corda, B.2    Hatzigeorgiou, A.G.3
  • 13
    • 58149186499 scopus 로고    scopus 로고
    • Mirecords: An integrated resource for microRNA-target interactions
    • (Database issue)
    • Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. Mirecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37(Database issue): D105-10.
    • (2009) Nucleic Acids Res , vol.37 , pp. 105-110
    • Xiao, F.1    Zuo, Z.2    Cai, G.3    Kang, S.4    Gao, X.5    Li, T.6
  • 15
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
    • (2009) Cell , vol.136 , Issue.2 , pp. 215-233
    • Bartel, D.P.1
  • 16
    • 77951953262 scopus 로고    scopus 로고
    • Got target? Computational methods for microRNA target prediction and their extension
    • Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 2010; 42(4): 233-44.
    • (2010) Exp Mol Med , vol.42 , Issue.4 , pp. 233-244
    • Min, H.1    Yoon, S.2
  • 17
    • 77952840905 scopus 로고    scopus 로고
    • MicroRNAs--targeting and target prediction
    • Saito T, Saetrom P. MicroRNAs--targeting and target prediction. N Biotechnol 2010; 27(3): 243-9.
    • (2010) N Biotechnol , vol.27 , Issue.3 , pp. 243-249
    • Saito, T.1    Saetrom, P.2
  • 18
    • 78951473652 scopus 로고    scopus 로고
    • Computational methods for the identification of microRNA targets
    • Dai Y, Zhou X. Computational methods for the identification of microRNA targets. Open Access Bioinformatics 2010; 2: 29-39.
    • (2010) Open Access Bioinformatics , vol.2 , pp. 29-39
    • Dai, Y.1    Zhou, X.2
  • 19
    • 60149095444 scopus 로고    scopus 로고
    • Most mammalian mRNAs are conserved targets of microRNAs
    • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
    • (2009) Genome Res , vol.19 , Issue.1 , pp. 92-105
    • Friedman, R.C.1    Farh, K.K.2    Burge, C.B.3    Bartel, D.P.4
  • 20
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500.
    • (2005) Nat Genet , vol.37 , Issue.5 , pp. 495-500
    • Krek, A.1    Grun, D.2    Poy, M.N.3
  • 22
    • 26944498633 scopus 로고    scopus 로고
    • Prediction and validation of microRNAs and their targets
    • Bentwich I. Prediction and validation of microRNAs and their targets. FEBS Lett 2005; 579(26): 5904-10.
    • (2005) FEBS Lett , vol.579 , Issue.26 , pp. 5904-5910
    • Bentwich, I.1
  • 23
    • 67649989679 scopus 로고    scopus 로고
    • Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines
    • Wang L, Oberg AL, Asmann YW, et al. Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS One 2009; 4(6): e5878.
    • (2009) Plos One , vol.4 , Issue.6 , pp. 5878
    • Wang, L.1    Oberg, A.L.2    Asmann, Y.W.3
  • 24
    • 34447288056 scopus 로고    scopus 로고
    • Bayesian inference of MicroRNA targets from sequence and expression data
    • Huang JC, Morris QD, Frey BJ. Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 2007; 14(5): 550-63.
    • (2007) J Comput Biol , vol.14 , Issue.5 , pp. 550-563
    • Huang, J.C.1    Morris, Q.D.2    Frey, B.J.3
  • 25
    • 67849101186 scopus 로고    scopus 로고
    • MicroRNA and mRNA integrated analysis (MMIA): A web tool for examining biological functions of microRNA expression
    • (Web Server issue)
    • Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 2009; 37(Web Server issue): W356-62.
    • (2009) Nucleic Acids Res , vol.37 , pp. 356-362
    • Nam, S.1    Li, M.2    Choi, K.3    Balch, C.4    Kim, S.5    Nephew, K.P.6
  • 26
    • 69549124090 scopus 로고    scopus 로고
    • Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers
    • Peng X, Li Y, Walters KA, et al. Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 2009; 10: 373.
    • (2009) BMC Genomics , vol.10 , pp. 373
    • Peng, X.1    Li, Y.2    Walters, K.A.3
  • 27
    • 79959997653 scopus 로고    scopus 로고
    • Mirconnx: Conditionspecific mRNA-microRNA network integrator
    • (Web Server issue)
    • Huang GT, Athanassiou C, Benos PV. Mirconnx: conditionspecific mRNA-microRNA network integrator. Nucleic Acids Res 2011; 39(Web Server issue): W416-23.
    • (2011) Nucleic Acids Res , vol.39 , pp. 416-423
    • Huang, G.T.1    Athanassiou, C.2    Benos, P.V.3
  • 29
    • 70350000602 scopus 로고    scopus 로고
    • TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples
    • Bandyopadhyay S, Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 2009; 25(20): 2625-31.
    • (2009) Bioinformatics , vol.25 , Issue.20 , pp. 2625-2631
    • Bandyopadhyay, S.1    Mitra, R.2
  • 30
    • 78149459713 scopus 로고    scopus 로고
    • Exprtarget: An integrative approach to predicting human microRNA targets
    • Gamazon ER, Im HK, Duan S, et al. Exprtarget: an integrative approach to predicting human microRNA targets. PLoS One 2010; 5(10): e13534.
    • (2010) Plos One , vol.5 , Issue.10 , pp. 13534
    • Gamazon, E.R.1    Im, H.K.2    Duan, S.3
  • 31
    • 38549092089 scopus 로고    scopus 로고
    • Mirgator: An integrated system for functional annotation of microRNAs
    • (Database issue)
    • Nam S, Kim B, Shin S, Lee S. Mirgator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res 2008; 36(Database issue): D159-64.
    • (2008) Nucleic Acids Res , vol.36 , pp. 159-164
    • Nam, S.1    Kim, B.2    Shin, S.3    Lee, S.4
  • 32
    • 67849116900 scopus 로고    scopus 로고
    • MirZ: An integrated microRNA expression atlas and target prediction resource
    • (Web Server issue)
    • Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, Zavolan M. MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 2009; 37(Web Server issue): W266-72.
    • (2009) Nucleic Acids Res , vol.37 , pp. 266-372
    • Hausser, J.1    Berninger, P.2    Rodak, C.3    Jantscher, Y.4    Wirth, S.5    Zavolan, M.6
  • 33
    • 75349100888 scopus 로고    scopus 로고
    • Mimirna: A microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets
    • Ritchie W, Flamant S, Rasko JE. Mimirna: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 2010; 26(2): 223-7.
    • (2010) Bioinformatics , vol.26 , Issue.2 , pp. 223-227
    • Ritchie, W.1    Flamant, S.2    Rasko, J.E.3
  • 34
    • 61849143920 scopus 로고    scopus 로고
    • MicroRNA target prediction by expression analysis of host genes
    • Gennarino VA, Sardiello M, Avellino R, et al. MicroRNA target prediction by expression analysis of host genes. Genome Res 2009; 19(3): 481-90.
    • (2009) Genome Res , vol.19 , Issue.3 , pp. 481-490
    • Gennarino, V.A.1    Sardiello, M.2    Avellino, R.3
  • 35
    • 36749005527 scopus 로고    scopus 로고
    • Using expression profiling data to identify human microRNA targets
    • Huang JC, Babak T, Corson TW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007; 4(12): 1045-9.
    • (2007) Nat Methods , vol.4 , Issue.12 , pp. 1045-1049
    • Huang, J.C.1    Babak, T.2    Corson, T.W.3
  • 36
    • 80054851243 scopus 로고    scopus 로고
    • A Bayesian graphical modeling approach to microRNA regulatory network inference
    • Stingo FC, Chen YA, Vannucci M, et al. A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann Appl Stat 2010; 4: 2024-48.
    • (2010) Ann Appl Stat , vol.4 , pp. 2024-2048
    • Stingo, F.C.1    Chen, Y.A.2    Vannucci, M.3
  • 37
    • 76349118332 scopus 로고    scopus 로고
    • A probabilistic framework to improve microrna target prediction by incorporating proteomics data
    • Li J, Min R, Bonner A, Zhang Z. A probabilistic framework to improve microrna target prediction by incorporating proteomics data. J Bioinform Comput Biol 2009; 7(6): 955-72.
    • (2009) J Bioinform Comput Biol , vol.7 , Issue.6 , pp. 955-972
    • Li, J.1    Min, R.2    Bonner, A.3    Zhang, Z.4
  • 38
    • 80051931399 scopus 로고    scopus 로고
    • A Lasso regression model for the construction of microRNA-target regulatory networks
    • Lu Y, Zhou Y, Qu W, Deng M, Zhang C. A Lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics 2011; 27(17): 2406-13.
    • (2011) Bioinformatics , vol.27 , Issue.17 , pp. 2406-2413
    • Lu, Y.1    Zhou, Y.2    Qu, W.3    Deng, M.4    Zhang, C.5
  • 39
    • 73249118535 scopus 로고    scopus 로고
    • Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy
    • Liu B, Li J, Tsykin A, Liu L, Gaur AB, Goodall GJ. Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics 2009; 10: 408.
    • (2009) BMC Bioinformatics , vol.10 , pp. 408
    • Liu, B.1    Li, J.2    Tsykin, A.3    Liu, L.4    Gaur, A.B.5    Goodall, G.J.6
  • 40
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • In: Solla SALTKMKR, editor, 2000; Cambridge: M I T Press
    • Attias H. A variational Bayesian framework for graphical models. In: Solla SALTKMKR, editor. Advances in Neural Information Processing Systems 12; 2000; Cambridge: M I T Press; 2000. p. 209-15.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 41
    • 40549138450 scopus 로고    scopus 로고
    • Comparing Sequence and Expression for Predicting microRNA Targets Using GenMIR3
    • Huang JC, Frey BJ, Morris Q. Comparing Sequence and Expression for Predicting microRNA Targets Using GenMIR3. Pacific Symposium on Biocomputin; 2008; 2008: p. 52-63.
    • (2008) Pacific Symposium on Biocomputin , vol.2008 , pp. 52-63
    • Huang, J.C.1    Frey, B.J.2    Morris, Q.3
  • 42
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000; 7(3-4): 601-20.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 43
    • 67651047262 scopus 로고    scopus 로고
    • A combinatorial approach to determine the contextdependent role in transcriptional and posttranscriptional regulation in Arabidopsis thaliana
    • Lu L, Li J. A combinatorial approach to determine the contextdependent role in transcriptional and posttranscriptional regulation in Arabidopsis thaliana. BMC Syst Biol 2009; 3: 43.
    • (2009) BMC Syst Biol , vol.3 , pp. 43
    • Lu, L.1    Li, J.2
  • 46
    • 33744501241 scopus 로고    scopus 로고
    • Bayesian error analysis model for reconstructing transcriptional regulatory networks
    • Sun N, Carroll RJ, Zhao H. Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proc Natl Acad Sci USA 2006; 103(21): 7988-93.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.21 , pp. 7988-7993
    • Sun, N.1    Carroll, R.J.2    Zhao, H.3
  • 47
    • 0004020258 scopus 로고    scopus 로고
    • Methods for the exploration of posterior distributions and likelihood functions: Springer Verlag
    • Tanner MA. Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions: Springer Verlag; 1996.
    • (1996) Tools for Statistical Inference
    • Tanner, M.A.1
  • 48
    • 85195239415 scopus 로고    scopus 로고
    • NCBI: http: //www.ncbi.nlm.nih.gov.
  • 49
    • 70350672533 scopus 로고    scopus 로고
    • Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms
    • Tu K, Yu H, Hua YJ, et al. Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms. Nucleic Acids Res 2009; 37(18): 5969-80.
    • (2009) Nucleic Acids Res , vol.37 , Issue.18 , pp. 5969-5980
    • Tu, K.1    Yu, H.2    Hua, Y.J.3
  • 51
    • 84864536221 scopus 로고    scopus 로고
    • MicroRNAs 15a/16-1 function as tumor suppressor genes in multiple myeloma
    • Gatt ME, Zhao JJ, Ebert MS, et al. MicroRNAs 15a/16-1 function as tumor suppressor genes in multiple myeloma. Blood 2011;117(26):7188.
    • (2011) Blood , vol.117 , Issue.26 , pp. 7188
    • Gatt, M.E.1    Zhao, J.J.2    Ebert, M.S.3
  • 52
    • 85195240347 scopus 로고    scopus 로고
    • GO: http: //www.geneontology.org/.
  • 53
    • 2342435295 scopus 로고    scopus 로고
    • Mapping Gene Ontology to proteins based on protein-protein interaction data
    • Deng M, Tu Z, Sun F, Chen T. Mapping Gene Ontology to proteins based on protein-protein interaction data. Bioinformatics 2004; 20(6): 895-902.
    • (2004) Bioinformatics , vol.20 , Issue.6 , pp. 895-902
    • Deng, M.1    Tu, Z.2    Sun, F.3    Chen, T.4
  • 54
    • 51349093465 scopus 로고    scopus 로고
    • MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis
    • Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105(35): 12885-90.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.35 , pp. 12885-12890
    • Pichiorri, F.1    Suh, S.S.2    Ladetto, M.3
  • 55
    • 28844483193 scopus 로고    scopus 로고
    • HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo
    • Dai Y, Yang Y, MacLeod V, et al. HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo. J Biol Chem 2005; 280(48): 40066-73.
    • (2005) J Biol Chem , vol.280 , Issue.48 , pp. 40066-40073
    • Dai, Y.1    Yang, Y.2    Macleod, V.3
  • 56
    • 78049485689 scopus 로고    scopus 로고
    • Combinatorial regulation of transcription factors and microRNAs
    • Su N, Wang Y, Qian M, Deng M. Combinatorial regulation of transcription factors and microRNAs. BMC Syst Biol 2010; 4: 150.
    • (2010) BMC Syst Biol , vol.4 , pp. 150
    • Su, N.1    Wang, Y.2    Qian, M.3    Deng, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.