메뉴 건너뛰기




Volumn , Issue , 2015, Pages 339-345

Attention please! a hybrid resource recommender mimicking attention-interpretation dynamics

Author keywords

Accuracy; Attentional focus; Categorization; Collaborative filtering; Connectionism; Decision making; Hybrid rec ommenders; LDA; Re source recommendations; Recommender; Social tagging systems; SUSTAIN

Indexed keywords

DECISION MAKING; DYNAMICS; FACTORIZATION; WORLD WIDE WEB;

EID: 84968677409     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2740908.2743057     Document Type: Conference Paper
Times cited : (26)

References (40)
  • 1
    • 84908889394 scopus 로고    scopus 로고
    • On over-specialization and concentration bias of recommendations
    • RecSys '14, New York, NY, USA. ACM
    • P. Adamopoulos and A. Tuzhilin. On over-specialization and concentration bias of recommendations. In Proc. of RecSys'14, RecSys '14, pages 153-160, New York, NY, USA, 2014. ACM.
    • (2014) Proc. of RecSys'14 , pp. 153-160
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 84892932622 scopus 로고    scopus 로고
    • Improving simple collaborative filtering models using ensemble methods
    • Springer
    • A. Bar, L. Rokach, G. Shani, B. Shapira, and A. Schclar. Improving simple collaborative filtering models using ensemble methods. In Multiple Classiffer Systems, pages 1-12. Springer, 2013.
    • (2013) Multiple Classiffer Systems , pp. 1-12
    • Bar, A.1    Rokach, L.2    Shani, G.3    Shapira, B.4    Schclar, A.5
  • 4
    • 33745800921 scopus 로고    scopus 로고
    • Unifying collaborative and content-based filtering
    • ACM
    • J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proc. of ICML'04, page 9. ACM, 2004.
    • (2004) Proc. of ICML'04 , pp. 9
    • Basilico, J.1    Hofmann, T.2
  • 5
    • 84894259500 scopus 로고    scopus 로고
    • Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols
    • P. G. Campos, F. Diez, and I. Cantador. Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols. User Modeling and User-Adapted Interaction, pages 1-53, 2013.
    • (2013) User Modeling and User-Adapted Interaction , pp. 1-53
    • Campos, P.G.1    Diez, F.2    Cantador, I.3
  • 6
    • 84938251367 scopus 로고    scopus 로고
    • 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)
    • New York, NY, USA ACM
    • I. Cantador, P. Brusilovsky, and T. Kuik. 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In Proc. of RecSys'11, RecSys 2011, New York, NY, USA, 2011. ACM.
    • (2011) Proc. of RecSys'11, RecSys 2011
    • Cantador, I.1    Brusilovsky, P.2    Kuik, T.3
  • 8
    • 78649822872 scopus 로고    scopus 로고
    • Web intelligence in tourism: User modeling and recommender system
    • Washington, DC, USA, IEEE Computer Society
    • B. Coleho, C. Martins, and A. Almeida. Web intelligence in tourism: User modeling and recommender system. In Proc. of WI-IAT '10, pages 619-622, Washington, DC, USA, 2010. IEEE Computer Society.
    • (2010) Proc. of WI-IAT '10 , pp. 619-622
    • Coleho, B.1    Martins, C.2    Almeida, A.3
  • 10
    • 84983573819 scopus 로고    scopus 로고
    • Investigating the persuasion potential of recommender systems from a quality perspective: An empirical study
    • June
    • P. Cremonesi, F. Garzotto, and R. Turrin. Investigating the persuasion potential of recommender systems from a quality perspective: An empirical study. ACM Trans. Interact. Intell. Syst., 2(2):11:1-11:41, June 2012.
    • (2012) ACM Trans. Interact. Intell. Syst. , vol.2 , Issue.2 , pp. 111-1141
    • Cremonesi, P.1    Garzotto, F.2    Turrin, R.3
  • 12
    • 84887602829 scopus 로고    scopus 로고
    • An analysis of tag-recommender evaluation procedures
    • New York, NY, USA, ACM
    • S. Doerfel and R. Jaschke. An analysis of tag-recommender evaluation procedures. In Proc. of Recsys'13, pages 343-346, New York, NY, USA, 2013. ACM.
    • (2013) Proc. of Recsys'13 , pp. 343-346
    • Doerfel, S.1    Jaschke, R.2
  • 13
    • 84887589590 scopus 로고    scopus 로고
    • Dynamic generation of personalized hybrid recommender systems
    • New York, NY, USA. ACM
    • S. Dooms. Dynamic generation of personalized hybrid recommender systems. In Proc. of RecSys'13, RecSys '13, pages 443-446, New York, NY, USA, 2013. ACM.
    • (2013) Proc. of RecSys'13, RecSys '13 , pp. 443-446
    • Dooms, S.1
  • 15
    • 84858263429 scopus 로고    scopus 로고
    • Collaborative indexing and knowledge exploration: A social learning model
    • W.-T. Fu and W. Dong. Collaborative indexing and knowledge exploration: A social learning model. IEEE Intelligent Systems, 27(1):39-46, 2012.
    • (2012) IEEE Intelligent Systems , vol.27 , Issue.1 , pp. 39-46
    • Fu, W.-T.1    Dong, W.2
  • 20
    • 84892431494 scopus 로고    scopus 로고
    • Utilizing user tag-based interests in recommender systems for social resource sharing websites
    • C.-L. Huang, P.-H. Yeh, C.-W. Lin, and D.-C. Wu. Utilizing user tag-based interests in recommender systems for social resource sharing websites. Knowledge-Based Systems, 56:86-96, 2014.
    • (2014) Knowledge-Based Systems , vol.56 , pp. 86-96
    • Huang, C.-L.1    Yeh, P.-H.2    Lin, C.-W.3    Wu, D.-C.4
  • 21
    • 84983587892 scopus 로고    scopus 로고
    • Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback
    • June
    • G. Jawaheer, P. Weller, and P. Kostkova. Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback. ACM Trans. Interact. Intell. Syst., 4(2):8:1-8:26, June 2014.
    • (2014) ACM Trans. Interact. Intell. Syst. , vol.4 , Issue.2 , pp. 81-826
    • Jawaheer, G.1    Weller, P.2    Kostkova, P.3
  • 24
    • 84925681696 scopus 로고    scopus 로고
    • Tagrec: Towards a standardized tag recommender benchmarking framework
    • New York, NY, USA, ACM
    • D. Kowald, E. Lacic, and C. Trattner. Tagrec: Towards a standardized tag recommender benchmarking framework. In Proc. of HT'14, New York, NY, USA, 2014. ACM.
    • (2014) Proc. of HT'14
    • Kowald, D.1    Lacic, E.2    Trattner, C.3
  • 25
    • 72249122753 scopus 로고    scopus 로고
    • Latent dirichlet allocation for tag recommendation
    • ACM
    • R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet allocation for tag recommendation. In Proc. of Recsys'09, pages 61-68. ACM, 2009.
    • (2009) Proc. of Recsys'09 , pp. 61-68
    • Krestel, R.1    Fankhauser, P.2    Nejdl, W.3
  • 26
    • 0026477904 scopus 로고
    • Alcove: An exemplar-based connectionist model of category learning
    • J. K. Kruschke et al. Alcove: An exemplar-based connectionist model of category learning. Psychological review, 99(1):22-44, 1992.
    • (1992) Psychological Review , vol.99 , Issue.1 , pp. 22-44
    • Kruschke, J.K.1
  • 29
    • 1942539715 scopus 로고    scopus 로고
    • Sustain: A network model of category learning
    • B. C. Love, D. L. Medin, and T. M. Gureckis. Sustain: A network model of category learning. Psychological review, 111(2):309, 2004.
    • (2004) Psychological Review , vol.111 , Issue.2 , pp. 309
    • Love, B.C.1    Medin, D.L.2    Gureckis, T.M.3
  • 31
    • 78649901491 scopus 로고    scopus 로고
    • Improving collaborative filtering in social tagging systems for the recommendation of scientific articles
    • IEEE
    • D. Parra-Santander and P. Brusilovsky. Improving collaborative filtering in social tagging systems for the recommendation of scientific articles. In Proc. of WIIAT'10, volume 1, pages 136-142. IEEE, 2010.
    • (2010) Proc. of WIIAT'10 , vol.1 , pp. 136-142
    • Parra-Santander, D.1    Brusilovsky, P.2
  • 33
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • ACM
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proc. of WWW'01, pages 285-295. ACM, 2001.
    • (2001) Proc. of WWW'01 , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 35
    • 84889561923 scopus 로고    scopus 로고
    • Recommending tags with a model of human categorization
    • New York, NY, USA, ACM
    • P. Seitlinger, D. Kowald, C. Trattner, and T. Ley. Recommending tags with a model of human categorization. In Proc. of CIKM'13, pages 2381-2386, New York, NY, USA, 2013. ACM.
    • (2013) Proc. of CIKM'13 , pp. 2381-2386
    • Seitlinger, P.1    Kowald, D.2    Trattner, C.3    Ley, T.4
  • 36
    • 84887584821 scopus 로고    scopus 로고
    • Trading-ó among accuracy, similarity, diversity, and long-tail: A graph-based recommendation approach
    • New York, NY, USA, ACM
    • L. Shi. Trading-ó among accuracy, similarity, diversity, and long-tail: A graph-based recommendation approach. In Proc. of RecSys'13, pages 57-64, New York, NY, USA, 2013. ACM.
    • (2013) Proc. of RecSys'13 , pp. 57-64
    • Shi, L.1
  • 37
    • 84905861914 scopus 로고    scopus 로고
    • Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges
    • May
    • Y. Shi, M. Larson, and A. Hanjalic. Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM Comput. Surv., 47(1):3:1-3:45, May 2014.
    • (2014) ACM Comput. Surv. , vol.47 , Issue.1 , pp. 31-345
    • Shi, Y.1    Larson, M.2    Hanjalic, A.3
  • 38
    • 80052985537 scopus 로고    scopus 로고
    • Spear: Spamming-resistant expertise analysis and ranking in collaborative tagging systems
    • C.-m. A. Yeung, M. G. Noll, N. Gibbins, C. Meinel, and N. Shadbolt. Spear: Spamming-resistant expertise analysis and ranking in collaborative tagging systems. Computational Intelligence, 27(3):458-488, 2011.
    • (2011) Computational Intelligence , vol.27 , Issue.3 , pp. 458-488
    • Yeung, C.-M.A.1    Noll, M.G.2    Gibbins, N.3    Meinel, C.4    Shadbolt, N.5
  • 39
    • 84863735354 scopus 로고    scopus 로고
    • Challenging the long tail recommendation
    • May
    • H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation. Proc. VLDB Endow., 5(9):896-907, May 2012.
    • (2012) Proc. VLDB Endow. , vol.5 , Issue.9 , pp. 896-907
    • Yin, H.1    Cui, B.2    Li, J.3    Yao, J.4    Chen, C.5
  • 40
    • 78650684080 scopus 로고    scopus 로고
    • A recommender system based on tag and time information for social tagging systems
    • N. Zheng and Q. Li. A recommender system based on tag and time information for social tagging systems. Expert Systems with Applications, 38(4):4575-4587, 2011.
    • (2011) Expert Systems with Applications , vol.38 , Issue.4 , pp. 4575-4587
    • Zheng, N.1    Li, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.