메뉴 건너뛰기




Volumn 2, Issue 2, 2012, Pages

Investigating the persuasion potential of recommender systems from a quality perspective: An empirical study

Author keywords

accuracy; conversion rate; design; empirical study; F measure; fallout; iTV; lift factor; long tail; novelty; perceived quality; persuasion; quality evaluation; recall; recommender algorithm; Recommender Systems; satisfaction

Indexed keywords

ALGORITHMS; DESIGN; FALLOUT;

EID: 84983573819     PISSN: 21606455     EISSN: 21606463     Source Type: Journal    
DOI: 10.1145/2209310.2209314     Document Type: Review
Times cited : (105)

References (92)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • ADOMAVICIUS, G. AND TUZHILIN, A. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 6, 734-749.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 4
    • 0040136481 scopus 로고
    • Predictions from armax models
    • BAILLIE, R. T. 1980. Predictions from armax models. J. Econ. 12, 3, 365-374.
    • (1980) J. Econ , vol.12 , Issue.3 , pp. 365-374
    • Baillie, R.T.1
  • 5
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • BALABANOVÍC,M. AND SHOHAM, Y. 1997. Fab: Content-based, collaborative recommendation. Comm. ACM 40, 3, 66-72.
    • (1997) Comm ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovícm1    Shoham, Y.2
  • 10
    • 0002741413 scopus 로고
    • Large-scale sparse singular value computations
    • BERRY, M. W. 1992. Large-scale sparse singular value computations. Int. J. Supercomput. Appl. 6, 1, 13-49.
    • (1992) Int. J. Supercomput. Appl , vol.6 , Issue.1 , pp. 13-49
    • Berry, M.W.1
  • 12
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • BURKE, R. 2002. Hybrid recommender systems: Survey and experiments. User Model. User-Adapted Interact. 12, 331-370.
    • (2002) User Model. User-Adapted Interact , vol.12 , pp. 331-370
    • Burke, R.1
  • 13
    • 55849142155 scopus 로고    scopus 로고
    • Springer- Verlag, Berlin
    • BURKE, R. 2007. The Adaptive Web. Springer-Verlag, Berlin, 377-408.
    • (2007) The Adaptive Web , pp. 377-408
    • Burke, R.1
  • 27
    • 34249308531 scopus 로고    scopus 로고
    • A content-collaborative recommender that exploits Wordnet-based user profiles for neighborhood formation
    • DE GEMMIS, M., LOPS, P., AND SEMERARO, G. 2007. A content-collaborative recommender that exploits Wordnet-based user profiles for neighborhood formation. User Model. User-Adapt. Interact. 17, 217-255.
    • (2007) User Model. User-Adapt. Interact , vol.17 , pp. 217-255
    • De Gemmis, M.1    Lops, P.2    Semeraro, G.3
  • 28
    • 3042821101 scopus 로고    scopus 로고
    • Item-based top-n recommendation algorithms
    • DESHPANDE, M. AND KARYPIS, G. 2004. Item-based top-n recommendation algorithms. ACM Trans. Inform. Syst. 22, 1, 143-177.
    • (2004) ACM Trans. Inform. Syst , vol.22 , Issue.1 , pp. 143-177
    • Deshpande, M.1    Karypis, G.2
  • 29
    • 81055135842 scopus 로고    scopus 로고
    • A comprehensive survey of neighborhood-based recommendation methods
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer
    • DESROSIERS, C. AND KARYPIS, G. 2011. A comprehensive survey of neighborhood-based recommendation methods. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer, 107-144.
    • (2011) Recommender Systems Handbook , pp. 107-144
    • Desrosiers, C.1    Karypis, G.2
  • 32
    • 67649933906 scopus 로고    scopus 로고
    • Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity
    • FLEDER, D. AND HOSANAGAR, K. 2009. Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Manage. Sci. 55, 697-712.
    • (2009) Manage. Sci , vol.55 , pp. 697-712
    • Fleder, D.1    Hosanagar, K.2
  • 33
    • 84903855224 scopus 로고    scopus 로고
    • Persuasive technology: Using computers to change what we think and do
    • Morgan Kaufmann Publishers
    • FOGG, B. 2003. Persuasive Technology: Using Computers to Change What We Think and Do. Series in Interactive Technologies. Morgan Kaufmann Publishers.
    • (2003) Series in Interactive Technologies
    • Fogg, B.1
  • 36
    • 33751055046 scopus 로고    scopus 로고
    • Persuasiveness of preference elicitation processes in destination recommendation systems
    • A. J. Frew Ed., Springer
    • GRETZEL, U. AND FESENMAIER, D. 2005. Persuasiveness of preference elicitation processes in destination recommendation systems. In Information and Communication Technologies in Tourism 2005, A. J. Frew Ed., Springer, 194-204.
    • (2005) Information and Communication Technologies in Tourism 2005 , pp. 194-204
    • Gretzel, U.1    Fesenmaier, D.2
  • 45
    • 8644249427 scopus 로고    scopus 로고
    • Implicit feedback for inferring user preference: A bibliography
    • KELLY, D. AND TEEVAN, J. 2003. Implicit feedback for inferring user preference: A bibliography. SIGIR Forum 37, 2, 18-28.
    • (2003) SIGIR Forum , vol.37 , Issue.2 , pp. 18-28
    • Kelly, D.1    Teevan, J.2
  • 48
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • KOREN, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data 4, 1, 1-24.
    • (2010) ACM Trans. Knowl. Discov. Data , vol.4 , Issue.1 , pp. 1-24
    • Koren, Y.1
  • 49
    • 33847696012 scopus 로고    scopus 로고
    • The effect of measurement task transparency on preference construction and evaluations of personalized recommendations
    • KRAMER, T. 2007. The effect of measurement task transparency on preference construction and evaluations of personalized recommendations. J. Market. Res. 44, 2, 224-233.
    • (2007) J. Market. Res , vol.44 , Issue.2 , pp. 224-233
    • Kramer, T.1
  • 50
    • 33847339350 scopus 로고    scopus 로고
    • A hybrid approach for improving predictive accuracy of collaborative filtering algorithms. User Model
    • LEKAKOS, G. AND GIAGLIS, G. M. 2007. A hybrid approach for improving predictive accuracy of collaborative filtering algorithms. User Model. User-Adapted Interact. 17, 5-40.
    • (2007) User-Adapted Interact , Issue.17 , pp. 5-40
    • Lekakos, G.1    Giaglis, G.M.2
  • 52
    • 80052881372 scopus 로고    scopus 로고
    • Content-based recommender systems: State of the art and trends
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer
    • LOPS, P.,DE GEMMIS, M., AND SEMERARO, G. 2011. Content-based recommender systems: State of the art and trends. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer, 73-105.
    • (2011) Recommender Systems Handbook , pp. 73-105
    • Lops, P.1    De Gemmis, M.2    Semeraro, G.3
  • 60
    • 77956616020 scopus 로고    scopus 로고
    • The effects of recommendations' presentation on persuasion and satisfaction in a movie recommender system
    • NANOU, T., LEKAKOS, G., AND FOUSKAS, K. G. 2010. The effects of recommendations' presentation on persuasion and satisfaction in a movie recommender system. Multimedia Syst. 16, 4-5, 219-230.
    • (2010) Multimedia Syst. , vol.16 , Issue.4-5 , pp. 219-230
    • Nanou, T.1    Lekakos, G.2    Fouskas, K.G.3
  • 61
    • 58149405130 scopus 로고
    • The halo effect: Evidence for unconscious alteration of judgments
    • NISBETT, R. E. AND WILSON, T. D. 1977. The halo effect: Evidence for unconscious alteration of judgments. J. Personal. Social Psychol. 35, 250-256.
    • (1977) J. Personal. Social Psychol , Issue.35 , pp. 250-256
    • Nisbett, R.E.1    Wilson, T.D.2
  • 62
    • 57949113756 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering
    • PATEREK, A. 2007. Improving regularized singular value decomposition for collaborative filtering. In Proceedings of the KDD Cup and Workshop.
    • (2007) Proceedings of the KDD Cup and Workshop
    • Paterek, A.1
  • 65
    • 42949100888 scopus 로고    scopus 로고
    • Evaluating product search and recommender systems for e-commerce environments
    • PU, P., CHEN, L., AND KUMAR, P. 2008. Evaluating product search and recommender systems for e-commerce environments. J. Electron. Commerce Res. 8, 1-27.
    • (2008) J. Electron. Commerce Res , vol.8 , pp. 1-27
    • Pu, P.1    Chen, L.2    Kumar, P.3
  • 69
    • 77954605272 scopus 로고    scopus 로고
    • Learning preferences of new users in recommender systems: An information theoretic approach
    • RASHID, A. M., KARYPIS, G., AND RIEDL, J. 2008. Learning preferences of new users in recommender systems: An information theoretic approach. SIGKDD Explorer Newslett. 10, 90-100.
    • (2008) SIGKDD Explorer Newslett , vol.10 , pp. 90-100
    • Rashid, A.M.1    Karypis, G.2    Riedl, J.3
  • 71
    • 0003882234 scopus 로고
    • Addison-Wesley Longman Publishing Co., Inc., Boston, MA
    • SALTON, G., Ed. 1988. Automatic Text Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.
    • (1988) Automatic Text Processing
    • Salton, G.1
  • 76
    • 79955164643 scopus 로고    scopus 로고
    • Evaluating recommendation systems
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds. Springer
    • SHANI, G. AND GUNAWARDANA, A. 2011. Evaluating recommendation systems. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer, 257-297.
    • (2011) Recommender Systems Handbook , pp. 257-297
    • Shani, G.1    Gunawardana, A.2
  • 81
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • TAK ́ACS, G., PIL ́ASZY, I., ŃeMETH, B., AND TIKK, D. 2009. Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623-656.
    • (2009) J. Mach. Learn. Res , Issue.10 , pp. 623-656
  • 83
    • 79960495877 scopus 로고    scopus 로고
    • Designing and evaluating explanations for recommender systems
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer
    • TINTAREV, N. AND MASTHOFF, J. 2011. Designing and evaluating explanations for recommender systems. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer, 479-510.
    • (2011) Recommender Systems Handbook , pp. 479-510
    • Tintarev, N.1    Masthoff, J.2
  • 84
    • 0004217877 scopus 로고
    • 2nd Ed. Department of Computer Science, University of Glasgow
    • VAN RIJSBERGEN, C. J. 1979. Information Retrieval 2nd Ed. Department of Computer Science, University of Glasgow.
    • (1979) Information Retrieval
    • Van Rijsbergen, C.J.1
  • 86
    • 33847704486 scopus 로고    scopus 로고
    • E-commerce product recommendation agents: Use, characteristics, and impact
    • XIAO, B. AND BENBASAT, I. 2007. E-commerce product recommendation agents: Use, characteristics, and impact. Manage. Inform. Syst. Quarterly 31, 137-209.
    • (2007) Manage. Inform. Syst. Quarterly , vol.31 , pp. 137-209
    • Xiao, B.1    Benbasat, I.2
  • 87
    • 81855181718 scopus 로고    scopus 로고
    • Creating more credible and persuasive recommender systems: The influence of source characteristics on recommender system evaluations
    • F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer
    • YOO, K. H. AND GRETZEL, U. 2011. Creating more credible and persuasive recommender systems: The influence of source characteristics on recommender system evaluations. In Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor Eds., Springer, 455-477.
    • (2011) Recommender Systems Handbook , pp. 455-477
    • Yoo, K.H.1    Gretzel, U.2
  • 88
    • 24044433598 scopus 로고    scopus 로고
    • A personalized TV guide system compliant with MHP
    • ZHANG, H., ZHENG, S., AND YUAN, J. 2005. A personalized TV guide system compliant with MHP. IEEE Trans. Consum. Electron. 51, 2, 731-737.
    • (2005) IEEE Trans. Consum. Electron , vol.51 , Issue.2 , pp. 731-737
    • Zhang, H.1    Zheng, S.2    Yuan, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.