메뉴 건너뛰기




Volumn , Issue , 2014, Pages 153-160

On over-specialization and concentration bias of recommendations: Probabilistic neighborhood selection in collaborative filtering systems

Author keywords

Collaborative filtering; Concentration bias; Diver sity; K PN; Long tail; Mobility; Over specialization; Popularity reinforcement; Probabilistic neighborhood selec tion

Indexed keywords

CARRIER MOBILITY; RECOMMENDER SYSTEMS; REINFORCEMENT;

EID: 84908889394     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2645710.2645752     Document Type: Conference Paper
Times cited : (94)

References (39)
  • 1
    • 72249119951 scopus 로고    scopus 로고
    • Getting recommender systems to think outside the box
    • ACM
    • Z. Abbassi, S. Amer-Yahia, et al. Getting recommender systems to think outside the box. In RecSys '09. ACM, 2009.
    • (2009) RecSys , vol.9
    • Abbassi, Z.1    Amer-Yahia, S.2
  • 2
    • 84906861437 scopus 로고    scopus 로고
    • On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems
    • ACM
    • P. Adamopoulos. On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems. In WSDM '14. ACM, 2014.
    • (2014) WSDM , vol.14
    • Adamopoulos, P.1
  • 3
    • 84865717536 scopus 로고    scopus 로고
    • On unexpectedness in recommender systems: Or how to expect the unexpected
    • ACM
    • P. Adamopoulos and A. Tuzhilin. On Unexpectedness in Recommender Systems: Or How to Expect the Unexpected. In DiveRS 2011 at RecSys '11. ACM, 2011.
    • (2011) DiveRS 2011 at RecSys , vol.11
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 4
    • 84908866163 scopus 로고    scopus 로고
    • Probabilistic neighborhood selection in collaborative filtering systems
    • P. Adamopoulos and A. Tuzhilin. Probabilistic neighborhood selection in collaborative filtering systems. Working Paper: CBA-13-04, NYU, 2013. http://hdl.handle.net/2451/31988.
    • (2013) Working Paper: CBA-13-04, NYU
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 5
    • 84887577194 scopus 로고    scopus 로고
    • Recommendation opportunities: Improving item prediction using weighted percentile methods in collaborative filtering systems
    • ACM
    • P. Adamopoulos and A. Tuzhilin. Recommendation opportunities: Improving item prediction using weighted percentile methods in collaborative filtering systems. In RecSys '13. ACM, 2013.
    • (2013) RecSys , vol.13
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 6
    • 84919756227 scopus 로고    scopus 로고
    • On unexpectedness in recommender systems: Or how to better expect the unexpected
    • P. Adamopoulos and A. Tuzhilin. On unexpectedness in recommender systems: Or how to better expect the unexpected. ACM TIST, 2015. http://tist.acm.org/papers/TIST-2012-09-0141.R2.pdf.
    • (2014) ACM TIST
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 7
    • 84962862340 scopus 로고    scopus 로고
    • Maximizing aggregate recommendation diversity: A graph-theoretic approach
    • ACM
    • G. Adomavicius and Y. Kwon. Maximizing Aggregate Recommendation Diversity: A Graph-Theoretic Approach. In DiveRS at RecSys '11. ACM, 2011.
    • (2011) DiveRS at RecSys , vol.11
    • Adomavicius, G.1    Kwon, Y.2
  • 8
    • 84859702336 scopus 로고    scopus 로고
    • Improving aggregate recommendation diversity using ranking-based techniques
    • G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity using ranking-based techniques. IEEE TKDE, 24(5):896-911, 2012.
    • (2012) IEEE TKDE , vol.24 , Issue.5 , pp. 896-911
    • Adomavicius, G.1    Kwon, Y.2
  • 9
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-The-Art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE, 17(6):734-749, 2005.
    • (2005) IEEE TKDE , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 10
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommendation. CACM, 40(3):66-72, 1997.
    • (1997) CACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 11
    • 0034479396 scopus 로고    scopus 로고
    • User modeling for adaptive news access
    • D. Billsus and M. J. Pazzani. User modeling for adaptive news access. UMUAI, 10(2-3):147-180, 2000.
    • (2000) UMUAI , vol.10 , Issue.2-3 , pp. 147-180
    • Billsus, D.1    Pazzani, M.J.2
  • 12
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • R. Burke. Hybrid recommender systems: Survey and experiments. UMUAI, 12(4):331-370, 2002.
    • (2002) UMUAI , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 13
    • 78649914423 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-n recommendation tasks
    • ACM
    • P. Cremonesi et al. Performance of recommender algorithms on top-n recommendation tasks. In RecSys '10. ACM, 2010.
    • (2010) RecSys , vol.10
    • Cremonesi, P.1
  • 14
    • 84887601353 scopus 로고    scopus 로고
    • Looking for "good" recommendations: A comparative evaluation of recommender systems
    • P. Cremonesi, F. Garzotto, et al. Looking for "good" recommendations: A comparative evaluation of recommender systems. In INTERACT '11. 2011.
    • (2011) INTERACT , vol.11
    • Cremonesi, P.1    Garzotto, F.2
  • 15
    • 81055135842 scopus 로고    scopus 로고
    • A comprehensive survey of neighborhood-based recommendation methods
    • Springer
    • C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommendation methods. In Recommender systems handbook. Springer, 2011.
    • (2011) Recommender Systems Handbook
    • Desrosiers, C.1    Karypis, G.2
  • 16
    • 84908683900 scopus 로고    scopus 로고
    • Movietweetings: A movie rating dataset collected from twitter
    • S. Dooms et al. Movietweetings: A movie rating dataset collected from twitter. In CrowdRec at RecSys '13, 2013.
    • (2013) CrowdRec at RecSys , vol.13
    • Dooms, S.1
  • 17
    • 47749109834 scopus 로고    scopus 로고
    • Electronic publication and the narrowing of science and scholarship
    • J. A. Evans. Electronic publication and the narrowing of science and scholarship. Science, 321(5887):395-399, 2008.
    • (2008) Science , vol.321 , Issue.5887 , pp. 395-399
    • Evans, J.A.1
  • 18
    • 84908880003 scopus 로고
    • Efficient calculation of expected miss ratios in the independent reference model
    • R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent reference model. SICOMP, 7(3), 1978.
    • (1978) SICOMP , vol.7 , pp. 3
    • Fagin, R.1    Price, T.G.2
  • 19
    • 67649933906 scopus 로고    scopus 로고
    • Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity
    • D. Fleder and K. Hosanagar. Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Manage. Sci., 55(5):697-712, 2009.
    • (2009) Manage. Sci , vol.55 , Issue.5 , pp. 697-712
    • Fleder, D.1    Hosanagar, K.2
  • 20
    • 82555181725 scopus 로고    scopus 로고
    • MyMediaLite: A free recommender system library
    • ACM
    • Z. Gantner, S. Rendle, et al. MyMediaLite: A free recommender system library. In RecSys '11. ACM, 2011.
    • (2011) RecSys , vol.11
    • Gantner, Z.1    Rendle, S.2
  • 21
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, et al. Using collaborative filtering to weave an information tapestry. CACM, 35(12):61-70, 1992.
    • (1992) CACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2
  • 23
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • ACM
    • J. L. Herlocker, J. A. Konstan, et al. An algorithmic framework for performing collaborative filtering. In SIGIR. ACM, 1999.
    • (1999) SIGIR
    • Herlocker, J.L.1    Konstan, J.A.2
  • 24
    • 79955625874 scopus 로고    scopus 로고
    • Drivers of the long tail phenomenon: An empirical analysis
    • O. Hinz, J. Eckert, et al. Drivers of the long tail phenomenon: An empirical analysis. JMIS, 27(4):43-70, 2011.
    • (2011) JMIS , vol.27 , Issue.4 , pp. 43-70
    • Hinz, O.1    Eckert, J.2
  • 25
    • 84887591867 scopus 로고    scopus 로고
    • What recommenders recommend-an analysis of accuracy, popularity, and sales diversity eects
    • Springer
    • D. Jannach, L. Lerche, et al. What recommenders recommend{an analysis of accuracy, popularity, and sales diversity eects. In UMAP. Springer, 2013.
    • (2013) UMAP
    • Jannach, D.1    Lerche, L.2
  • 26
    • 0031103122 scopus 로고    scopus 로고
    • Grouplens: Applying collaborative filtering to usenet news
    • J. A. Konstan, B. N. Miller, et al. Grouplens: Applying collaborative filtering to usenet news. CACM, 40(3), 1997.
    • (1997) CACM , vol.40 , pp. 3
    • Konstan, J.A.1    Miller, B.N.2
  • 27
    • 84897763580 scopus 로고    scopus 로고
    • The dierences between recommender technologies in their impact on sales diversity
    • C. Matt, T. Hess, et al. The dierences between recommender technologies in their impact on sales diversity. In ICIS, 2013.
    • (2013) ICIS
    • Matt, C.1    Hess, T.2
  • 28
    • 84887587513 scopus 로고    scopus 로고
    • Hidden factors and hidden topics: Understanding rating dimensions with text
    • J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with text. In RecSys'13, 2013.
    • (2013) RecSys'13
    • McAuley, J.1    Leskovec, J.2
  • 29
    • 84869147060 scopus 로고    scopus 로고
    • Being accurate is not enough: How accuracy metrics have hurt recommend. Systems
    • S. M. McNee, J. Riedl, et al. Being accurate is not enough: How accuracy metrics have hurt recommend. systems. In CHI, 2006.
    • (2006) CHI
    • McNee, S.M.1    Riedl, J.2
  • 30
    • 84908889530 scopus 로고    scopus 로고
    • How does high dimensionality aect collaborative filtering?
    • ACM
    • A. Nanopoulos et al. How does high dimensionality aect collaborative filtering? In RecSys '09. ACM, 2009.
    • (2009) RecSys '09
    • Nanopoulos, A.1
  • 31
    • 84908866160 scopus 로고    scopus 로고
    • Exploring the filter bubble: The eect of using rec. Sys. On content diversity
    • T. T. Nguyen, P.-M. Hui, et al. Exploring the filter bubble: The eect of using rec. sys. on content diversity. In WWW, 2014.
    • (2014) WWW
    • Nguyen, T.T.1    Hui, P.-M.2
  • 32
    • 78649417385 scopus 로고    scopus 로고
    • Hubs in space: Popular nearest neighbors in high-dimensional data
    • M. Radovanovic, A. Nanopoulos, et al. Hubs in space: Popular nearest neighbors in high-dimensional data. JMLR, 2010.
    • (2010) JMLR
    • Radovanovic, M.1    Nanopoulos, A.2
  • 33
    • 84947596693 scopus 로고    scopus 로고
    • Analysis of linear and order statistics combiners for fusion of imbalanced classiers
    • F. Roli and G. Fumera. Analysis of linear and order statistics combiners for fusion of imbalanced classiers. In MCS, 2002.
    • (2002) MCS
    • Roli, F.1    Fumera, G.2
  • 34
    • 84908873879 scopus 로고    scopus 로고
    • User-centric evaluation of a k-furthest neighbor CF recommender algorithm
    • A. Said, B. Fields, et al. User-centric evaluation of a k-furthest neighbor CF recommender algorithm. In CSCW. ACM, 2013.
    • (2013) CSCW. ACM
    • Said, A.1    Fields, B.2
  • 35
    • 84867447252 scopus 로고    scopus 로고
    • Increasing diversity through furthest neighbor-based recommendation
    • A. Said, B. J. Jain, et al. Increasing diversity through furthest neighbor-based recommendation. In DDR at WSDM '12, 2012.
    • (2012) DDR at WSDM , vol.12
    • Said, A.1    Jain, B.J.2
  • 36
    • 72249119237 scopus 로고    scopus 로고
    • On the limitations of browsing top-n recommender systems
    • ACM
    • K. Seyerlehner, A. Flexer, et al. On the limitations of browsing top-n recommender systems. In RecSys '09. ACM, 2009.
    • (2009) RecSys ' 09
    • Seyerlehner, K.1    Flexer, A.2
  • 37
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classiers
    • K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classiers. Connection science, 8(3-4), 1996.
    • (1996) Connection science , vol.8 , pp. 3-4
    • Tumer, K.1    Ghosh, J.2
  • 38
    • 0042889679 scopus 로고
    • An ecient method for weighted sampling without replacement
    • C.-K. Wong and M. C. Easton. An ecient method for weighted sampling without replacement. SICOMP, 9(1):111-113, 1980.
    • (1980) SICOMP , vol.9 , Issue.1 , pp. 111-113
    • Wong, C.-K.1    Easton, M.C.2
  • 39
    • 33645657113 scopus 로고    scopus 로고
    • Improving recommendation lists through topic diversication
    • C.-N. Ziegler, S. M. McNee, et al. Improving recommendation lists through topic diversication. In WWW '05. ACM, 2005.
    • (2005) WWW ' 05. ACM
    • Ziegler, C.-N.1    McNee, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.