메뉴 건너뛰기




Volumn 1210, Issue , 2014, Pages

Recommending items in social tagging systems using tag and time information

Author keywords

Base level learning equation; Collaborative filtering; Item ranking; Recommender systems; Social tagging

Indexed keywords

COLLABORATIVE FILTERING; E-LEARNING; HYPERTEXT SYSTEMS; INFORMATION USE; RECOMMENDER SYSTEMS; SOCIAL NETWORKING (ONLINE); THESAURI;

EID: 84925639527     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (26)
  • 2
    • 63449085032 scopus 로고    scopus 로고
    • Recommending scientič articles using citeulike
    • New York, NY, USA. ACM
    • T. Bogers and A. van den Bosch. Recommending scientič articles using citeulike. In Proc., RecSys '08, pages 287-290, New York, NY, USA, 2008. ACM.
    • (2008) Proc., RecSys '08 , pp. 287-290
    • Bogers, T.1    Van Den Bosch, A.2
  • 3
    • 84894259500 scopus 로고    scopus 로고
    • Time-Aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols
    • P. G. Campos, F. Déz, and I. Cantador. Time-Aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols. User Modeling and User-Adapted Interaction, pages 1-53, 2013.
    • (2013) User Modeling and User-Adapted Interaction , pp. 1-53
    • Campos, P.G.1    Déz, F.2    Cantador, I.3
  • 5
    • 84871059517 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-n recommendation tasks
    • New York, NY, USA. ACM
    • P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Proc., RecSys '10, New York, NY, USA. ACM.
    • Proc., RecSys '10
    • Cremonesi, P.1    Koren, Y.2    Turrin, R.3
  • 10
    • 84892431494 scopus 로고    scopus 로고
    • Utilizing user tag-based interests in recommender systems for social resource sharing websites
    • C.-L. Huang, P.-H. Yeh, C.-W. Lin, and D.-C. Wu. Utilizing user tag-based interests in recommender systems for social resource sharing websites. Knowledge-Based Systems, 2014.
    • (2014) Knowledge-Based Systems
    • Huang, C.-L.1    Yeh, P.-H.2    Lin, C.-W.3    Wu, D.-C.4
  • 14
    • 84925681696 scopus 로고    scopus 로고
    • Tagrec: Towards a standardized tag recommender benchmarking framework
    • New York, NY, USA. ACM
    • D. Kowald, E. Lacic, and C. Trattner. Tagrec: Towards a standardized tag recommender benchmarking framework. In Proc., HT '14, New York, NY, USA, 2014. ACM.
    • (2014) Proc., HT '14
    • Kowald, D.1    Lacic, E.2    Trattner, C.3
  • 15
    • 84990929323 scopus 로고    scopus 로고
    • Long time no see: The probability of reusing tags as a function of frequency and recency
    • ACM
    • D. Kowald, P. Seitlinger, C. Trattner, and T. Ley. Long time no see: The probability of reusing tags as a function of frequency and recency. In Proc. WWW '14. ACM.
    • Proc. WWW '14
    • Kowald, D.1    Seitlinger, P.2    Trattner, C.3    Ley, T.4
  • 17
    • 78649901491 scopus 로고    scopus 로고
    • Improving collaborative filtering in social tagging systems for the recommendation of scientič articles
    • D. Parra-Santander and P. Brusilovsky. Improving collaborative filtering in social tagging systems for the recommendation of scientič articles. In WI-IAT, 2010 IEEE/WIC/ACM.
    • WI-IAT, 2010 IEEE/WIC/ACM
    • Parra-Santander, D.1    Brusilovsky, P.2
  • 18
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • New York, NY, USA. ACM
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proc., WWW '01, pages 285-295, New York, NY, USA, 2001. ACM.
    • (2001) Proc., WWW '01 , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 20
    • 84889561923 scopus 로고    scopus 로고
    • Recommending tags with a model of human categorization
    • New York, NY, USA. ACM
    • P. Seitlinger, D. Kowald, C. Trattner, and T. Ley. Recommending tags with a model of human categorization. In Proc., CIKM '13, pages 2381-2386, New York, NY, USA, 2013. ACM.
    • (2013) Proc., CIKM '13 , pp. 2381-2386
    • Seitlinger, P.1    Kowald, D.2    Trattner, C.3    Ley, T.4
  • 22
    • 33746258703 scopus 로고    scopus 로고
    • Semiotic dynamics for embodied agents
    • IEEE
    • L. Steels. Semiotic dynamics for embodied agents. Intelligent Systems, IEEE, 21(3):32-38, 2006.
    • (2006) Intelligent Systems , vol.21 , Issue.3 , pp. 32-38
    • Steels, L.1
  • 23
    • 84864042105 scopus 로고    scopus 로고
    • Evaluating tag-based information access in image collections
    • New York, NY, USA. ACM
    • C. Trattner, Y.-l. Lin, D. Parra, Z. Yue, W. Real, and P. Brusilovsky. Evaluating tag-based information access in image collections. In Proc., HT '12, pages 113-122, New York, NY, USA, 2012. ACM.
    • (2012) Proc., HT '12 , pp. 113-122
    • Trattner, C.1    Lin, Y.-L.2    Parra, D.3    Yue, Z.4    Real, W.5    Brusilovsky, P.6
  • 24
    • 56749171376 scopus 로고    scopus 로고
    • Tag-Aware recommender systems by fusion of collaborative filtering algorithms
    • ACM
    • K. H. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme. Tag-Aware recommender systems by fusion of collaborative filtering algorithms. In Proc. of SAC '08. ACM.
    • Proc. of SAC '08
    • Tso-Sutter, K.H.1    Marinho, L.B.2    Schmidt-Thieme, L.3
  • 25
    • 84980353809 scopus 로고    scopus 로고
    • Rank and relevance in novelty and diversity metrics for recommender systems
    • ACM
    • S. Vargas and P. Castells. Rank and relevance in novelty and diversity metrics for recommender systems. In Proc., RecSys '11. ACM.
    • Proc., RecSys '11
    • Vargas, S.1    Castells, P.2
  • 26
    • 78650684080 scopus 로고    scopus 로고
    • A recommender system based on tag and time information for social tagging systems
    • N. Zheng and Q. Li. A recommender system based on tag and time information for social tagging systems. Expert Syst. Appl., 2011.
    • (2011) Expert Syst. Appl.
    • Zheng, N.1    Li, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.