메뉴 건너뛰기




Volumn 7872 LNCS, Issue , 2013, Pages 1-12

Improving simple collaborative filtering models using ensemble methods

Author keywords

Collaborative filtering; Ensemble methods; Recommendation systems

Indexed keywords

COLLABORATIVE FILTERING ALGORITHMS; COLLABORATIVE FILTERING METHODS; COMPUTATIONAL COSTS; EMPIRICAL EVALUATIONS; ENSEMBLE LEARNING; ENSEMBLE METHODS; ENSEMBLE TECHNIQUES; MATRIX FACTORIZATIONS;

EID: 84892932622     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-38067-9_1     Document Type: Conference Paper
Times cited : (57)

References (18)
  • 3
    • 84892912915 scopus 로고    scopus 로고
    • Factorization Meets the Neighborhood: A Multifaceted Factor in the Neighbors: Scalable and Accurate Collaborative Filtering
    • ACM Press
    • Koren, Y.: Factorization Meets the Neighborhood: a Multifaceted Factor in the Neighbors: Scalable and Accurate Collaborative Filtering. In: Proc. 14th ACM Int. Conference on Knowledge Discovery and Data Mining (KDD 2008). ACM Press (2008)
    • (2008) Proc. 14th ACM Int. Conference on Knowledge Discovery and Data Mining (KDD 2008)
    • Koren, Y.1
  • 4
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and Experiments
    • Burke, R.: Hybrid recommender systems: Survey and Experiments. User Model. User-Adapt. Interact. 12(4), 331-370 (2002)
    • (2002) User Model. User-Adapt. Interact. , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 5
    • 64149121935 scopus 로고    scopus 로고
    • Scalable Collaborative Filtering Approaches for Large Recommender Systems
    • Takacs, Pilaszy, I., Nemeth, B., Tikk, D.: Scalable Collaborative Filtering Approaches for Large Recommender Systems. JMLR 10, 623-656 (2009)
    • (2009) JMLR , vol.10 , pp. 623-656
    • Takacs, P.I.1    Nemeth, B.2    Tikk, D.3
  • 6
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix Prize Challenge
    • Bell, R., Koren, Y.: Lessons from the Netflix Prize Challenge. SIGKDD Explorations 9 (2007)
    • (2007) SIGKDD Explorations , pp. 9
    • Bell, R.1    Koren, Y.2
  • 7
    • 49749086487 scopus 로고    scopus 로고
    • Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights
    • Bell, R., Koren, Y.: Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights. In: IEEE International Conference on Data Mining (ICDM 2007), pp. 43-52 (2007)
    • (2007) IEEE International Conference on Data Mining (ICDM 2007) , pp. 43-52
    • Bell, R.1    Koren, Y.2
  • 10
  • 11
    • 84856975898 scopus 로고    scopus 로고
    • Two-way cooperative prediction for collaborative filtering recommendations
    • Lee, J.-S., Olafsson, S.: Two-way cooperative prediction for collaborative filtering recommendations. Expert Systems with Applications (2008)
    • (2008) Expert Systems with Applications
    • Lee, J.-S.1    Olafsson, S.2
  • 14
    • 77956202935 scopus 로고    scopus 로고
    • Combining predictions for accurate recommender systems
    • Jahrer, M., Töscher, A., Legenstein, R.: Combining predictions for accurate recommender systems. In: Proc. 16th ACM SIGKDD, pp. 693-702 (2010)
    • (2010) Proc. 16th ACM SIGKDD , pp. 693-702
    • Jahrer, M.1    Töscher, A.2    Legenstein, R.3
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L.: Bagging Predictors. Machine Learning 24, 123-140 (1996)
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 16
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost.RT, an improved boosting scheme for regression
    • Shrestha, D., Solomatine, D.: Experiments with AdaBoost.RT, an improved boosting scheme for regression. Neural Computation 18 (2006)
    • (2006) Neural Computation , pp. 18
    • Shrestha, D.1    Solomatine, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.