메뉴 건너뛰기




Volumn 4, Issue 2, 2014, Pages

Modeling user preferences in recommender systems: A classification framework for explicit and implicit user feedback

Author keywords

Explicit feedback; Feedback; Implicit feedback; Improvement of feedback; Recommender systems

Indexed keywords

RECOMMENDER SYSTEMS;

EID: 84983587892     PISSN: 21606455     EISSN: 21606463     Source Type: Journal    
DOI: 10.1145/2512208     Document Type: Article
Times cited : (135)

References (76)
  • 4
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17, 6, 734-749. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1423975.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 6
    • 70349798309 scopus 로고    scopus 로고
    • I like it. I like it not: Evaluating user ratings noise in recommender systems
    • G.-J. Houben, G.McCalla, F. Pianesi, and M. Zancanaro (Eds.), Springer, Berlin, Heidelberg
    • Xavier Amatriain, Josep Pujol, and Nuria Oliver. 2009a. I like it. I like it not: Evaluating user ratings noise in recommender systems. In G.-J. Houben, G.McCalla, F. Pianesi, and M. Zancanaro (Eds.), User Modeling, Adaptation, and Personalization. Springer, Berlin, Heidelberg, 247-258.
    • (2009) User Modeling, Adaptation, and Personalization , pp. 247-258
    • Amatriain, X.1    Pujol, J.2    Oliver, N.3
  • 9
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix prize challenge
    • Robert M. Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newsletter 9, 2, 75. http://portal.acm.org/ citation.cfm?doid=1345448.1345465.
    • (2007) ACM SIGKDD Explorations Newsletter , vol.9 , Issue.2 , pp. 75
    • Bell, R.M.1    Koren, Y.2
  • 14
    • 3042821101 scopus 로고    scopus 로고
    • Item-based top-N recommendation algorithms
    • Mukund Deshpande and George Karypis. 2004. Item-based top-N recommendation algorithms. ACM Transactions on Information Systems 22, 1, 143-177. http://portal.acm.org/citation.cfm?doid=963770.963776.
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 143-177
    • Deshpande, M.1    Karypis, G.2
  • 19
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4, 2, 133-151. http://www.springerlink.com/index/M5458KV8LJ602646.pdf.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 20
    • 84983579815 scopus 로고    scopus 로고
    • Retrieved May 26, 2014
    • GroupLens Research. 2011a. EachMovie Dataset. Retrieved May 26, 2014, from http://www.grouplens.org/node/76.
    • (2011) EachMovie Dataset
  • 21
    • 84856139582 scopus 로고    scopus 로고
    • Retrieved May 26, 2014
    • GroupLens Research. 2011b. MovieLens Dataset. Retrieved May 26, 2014, from http://www.grouplens.org/node/73.
    • (2011) MovieLens Dataset
  • 22
    • 26944452408 scopus 로고    scopus 로고
    • An economic model of user rating in an online recommender system
    • L. Ardissono, P. Brna, and A. Mitrovic (Eds.), Springer
    • Maxwell F. Harper, Xin Li, Yan Chen, and Joseph A. Konstan. 2005. An economic model of user rating in an online recommender system. In L. Ardissono, P. Brna, and A. Mitrovic (Eds.), User Modeling 2005. Springer, 307-316.
    • (2005) User Modeling 2005 , pp. 307-316
    • Harper, M.F.1    Li, X.2    Chen, Y.3    Konstan, J.A.4
  • 24
    • 84983578597 scopus 로고    scopus 로고
    • Retrieved May 26, 2014, from
    • Oscar Celma Herrada, 2009a. Last.fm Dataset. Retrieved May 26, 2014, from http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/index.html.
    • (2009) Last.fm Dataset
    • Herrada, O.C.1
  • 29
    • 2642585929 scopus 로고
    • Retrieved May 26, 2014
    • IMDB.com Inc. 1990. The Internet Movie Database. Retrieved May 26, 2014, from http://www.imdb.com.
    • (1990) The Internet Movie Database
  • 31
    • 78649937636 scopus 로고    scopus 로고
    • Characterisation of explicit feedback in an online music recommendation service
    • ACM Press, New York, NY
    • Gawesh Jawaheer, Martin Szomszor, and Patty Kostkova. 2010a. Characterisation of explicit feedback in an online music recommendation service. In Proceedings of the 4th Conference on Recommender Systems. ACM Press, New York, NY, 317-320.
    • (2010) Proceedings of the 4th Conference on Recommender Systems , pp. 317-320
    • Jawaheer, G.1    Szomszor, M.2    Kostkova, P.3
  • 34
    • 84867480271 scopus 로고    scopus 로고
    • User modeling for information access based on implicit feedback
    • Jinmook Kim and Douglas W. Oard. 2001. User modeling for information access based on implicit feedback. In Proceedings of the Symposium of ISKO-France. 1-11.
    • (2001) Proceedings of the Symposium of ISKO-France , pp. 1-11
    • Kim, J.1    Oard, D.W.2
  • 37
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • Yehuda Koren. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACMTransactions on Knowledge Discovery from Data 4, 1, 1-24. http://portal.acm.org/citation.cfm?doid=1644873.1644874.
    • (2010) ACMTransactions on Knowledge Discovery from Data , vol.4 , Issue.1 , pp. 1-24
    • Koren, Y.1
  • 38
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer 42, 8, 30-37.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 39
    • 82555183095 scopus 로고    scopus 로고
    • OrdRec: An ordinal model for predicting personalized item rating distributions
    • ACM Press, New York, NY
    • Yehuda Koren and Joe Sill. 2011. OrdRec: An ordinal model for predicting personalized item rating distributions. In Proceedings of the 5th Conference on Recommender Systems (RecSys'11). ACM Press, New York, NY, 117-124.
    • (2011) Proceedings of the 5th Conference on Recommender Systems (RecSys'11) , pp. 117-124
    • Koren, Y.1    Sill, J.2
  • 41
  • 42
    • 84874990746 scopus 로고    scopus 로고
    • What impact do healthcare digital libraries have? An evaluation of national resource of infection control at the point of care using the Impact-ED framework
    • Patty Kostkova and Gemma Madle. 2013. What impact do healthcare digital libraries have? An evaluation of national resource of infection control at the point of care using the Impact-ED framework. International Journal on Digital Libraries 13, 2, 77-90.
    • (2013) International Journal on Digital Libraries , vol.13 , Issue.2 , pp. 77-90
    • Kostkova, P.1    Madle, G.2
  • 43
    • 63449119662 scopus 로고    scopus 로고
    • Improving top-N recommendation techniques using rating variance
    • ACM Press, New York, NY
    • YoungOk Kwon. 2008. Improving top-N recommendation techniques using rating variance. In Proceedings of the 2008 Conference on Recommender Systems (RecSys'08). ACM Press, New York, NY, 307-310.
    • (2008) Proceedings of the 2008 Conference on Recommender Systems (RecSys'08) , pp. 307-310
    • Kwon, Y.1
  • 48
    • 67049098030 scopus 로고    scopus 로고
    • User information seeking behaviour: Perceptions and reality. An evaluation of the WHO Labresources Internet portal
    • Gemma Madle, Anouk Berger, Sebastien Cognat, SylvioMenna, and Patty Kostkova. 2009. User information seeking behaviour: Perceptions and reality. An evaluation of the WHO Labresources Internet portal. Informatics for Health and Social Care 34, 1, 30-38.
    • (2009) Informatics for Health and Social Care , vol.34 , Issue.1 , pp. 30-38
    • Madle, G.1    Berger, A.2    Cognat, S.3    Menna, S.4    Kostkova, P.5
  • 49
    • 72249101936 scopus 로고    scopus 로고
    • Collaborative prediction and ranking with non-random missing data
    • ACM Press, New York, NY
    • Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative prediction and ranking with non-random missing data. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys'09). ACM Press, New York, NY, 5-12. http://portal.acm.org/citation.cfm?doid=1639714.1639717.
    • (2009) Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys'09) , pp. 5-12
    • Marlin, B.M.1    Zemel, R.S.2
  • 50
    • 84937428725 scopus 로고    scopus 로고
    • Evaluating preference-based feedback in recommender systems
    • Springer
    • Lorraine McGinty and Barry Smyth. 2002. Evaluating preference-based feedback in recommender systems. In Artificial Intelligence and Cognitive Science. Springer, 209-214.
    • (2002) Artificial Intelligence and Cognitive Science , pp. 209-214
    • McGinty, L.1    Smyth, B.2
  • 59
    • 84891945520 scopus 로고    scopus 로고
    • Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping
    • Denis Parra, Alexandros Karatzoglou, Xavier Amatriain, and Idil Yavuz. 2011. Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping. In Proceedings of CARS 2011.
    • (2011) Proceedings of CARS 2011
    • Parra, D.1    Karatzoglou, A.2    Amatriain, X.3    Yavuz, I.4
  • 60
    • 77954605272 scopus 로고    scopus 로고
    • Learning preferences of new users in recommender systems: An information theoretic approach
    • Al-Manunur Rashid, George Karypis, and John Riedl. 2008. Learning preferences of new users in recommender systems: An information theoretic approach. ACM SIGKDD Explorations Newsletter 10, 2, 90-100. http://dl.acm.org/ citation.cfm?id=1540302.
    • (2008) ACM SIGKDD Explorations Newsletter , vol.10 , Issue.2 , pp. 90-100
    • Rashid, A.-M.1    Karypis, G.2    Riedl, J.3
  • 63
    • 84951732461 scopus 로고    scopus 로고
    • Retrieved May 26, 2014
    • Judy Robertson. 2011. Stats:We're Doing It Wrong. Retrieved May 26, 2014, from http://cacm.acm.org/blogs/blog-cacm/107125-stats-were-doing-it-wrong/ fulltext.
    • (2011) Stats:We're Doing It Wrong
    • Robertson, J.1
  • 64
    • 84885888641 scopus 로고    scopus 로고
    • Do users do what they think they do?, A comparative study of user perceived and actual information searching behaviour in the National Electronic Library of Infection
    • Springer
    • Anjana Roy, Patty Kostkova, Mike Catchpole, and Ewart Carson. 2010. "Do users do what they think they do?" A comparative study of user perceived and actual information searching behaviour in the National Electronic Library of Infection. In Electronic Healthcare. Springer, 96-103.
    • (2010) Electronic Healthcare , pp. 96-103
    • Roy, A.1    Kostkova, P.2    Catchpole, M.3    Carson, E.4
  • 66
    • 34249990939 scopus 로고    scopus 로고
    • Collaborative filtering recommender systems
    • P. Brusilovsky, A.Kobsa, andW. Nejdl (Eds.), Springer, Berlin, Heidelberg
    • J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative filtering recommender systems. In P. Brusilovsky, A.Kobsa, andW. Nejdl (Eds.), The AdaptiveWeb. Springer, Berlin, Heidelberg, 291-324.
    • (2007) The AdaptiveWeb , pp. 291-324
    • Schafer, J.B.1    Frankowski, D.2    Herlocker, J.3    Sen, S.4
  • 70
    • 42149147382 scopus 로고    scopus 로고
    • Leveraging aggregate ratings for better recommendations
    • ACM Press, New York, NY
    • Akhmed Umyarov and Alexander Tuzhilin. 2007. Leveraging aggregate ratings for better recommendations. In Proceedings of the 2007 Conference on Recommender Systems (RecSys'07). ACM Press, New York, NY, 161. http://portal.acm.org/citation.cfm?doid=1297231.1297261.
    • (2007) Proceedings of the 2007 Conference on Recommender Systems (RecSys'07) , pp. 161
    • Umyarov, A.1    Tuzhilin, A.2
  • 71
    • 67049167771 scopus 로고    scopus 로고
    • Improving collaborative filtering recommendations using external data
    • Washington, DC
    • Akhmed Umyarov and Alexander Tuzhilin. 2008. Improving collaborative filtering recommendations using external data. In Proceedings of the 2008 8th International Conference on Data Mining. IEEE Computer Society, Washington, DC, 618-627. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4781157.
    • (2008) Proceedings of the 2008 8th International Conference on Data Mining , pp. 618-627
    • Umyarov, A.1    Tuzhilin, A.2
  • 72
    • 72249098563 scopus 로고    scopus 로고
    • Improving rating estimation in recommender systems using aggregation- And variance-based hierarchical models
    • ACM Press, New York, NY
    • Akhmed Umyarov and Alexander Tuzhilin. 2009. Improving rating estimation in recommender systems using aggregation- And variance-based hierarchical models. In Proceedings of the 3rd Conference on Recommender Systems (RecSys'09). ACM Press, New York, NY, 37. http://portal.acm.org/citation.cfm?doid=1639714. 1639722.
    • (2009) Proceedings of the 3rd Conference on Recommender Systems (RecSys'09) , pp. 37
    • Umyarov, A.1    Tuzhilin, A.2
  • 73
    • 48349094364 scopus 로고    scopus 로고
    • Improving maximum margin matrix factorization
    • Markus Weimer, Alexandros Karatzoglou, and Alex Smola. 2008. Improving maximum margin matrix factorization. Machine Learning 72, 3, 263-276.
    • (2008) Machine Learning , vol.72 , Issue.3 , pp. 263-276
    • Weimer, M.1    Karatzoglou, A.2    Smola, A.3
  • 75
    • 58849112631 scopus 로고    scopus 로고
    • Case-studies on exploiting explicit customer requirements in recommender systems
    • Markus Zanker and Markus Jessenitschnig. 2009. Case-studies on exploiting explicit customer requirements in recommender systems. User Modeling and User-Adapted Interaction 19, 1, 133-166.
    • (2009) User Modeling and User-Adapted Interaction , vol.19 , Issue.1 , pp. 133-166
    • Zanker, M.1    Jessenitschnig, M.2
  • 76
    • 84888016586 scopus 로고    scopus 로고
    • Retrieved May 26, 2014
    • Cai-Nicolas Ziegler. 2004. Book-Crossing Dataset. Retrieved May 26, 2014, from http://www.informatik.unifreiburg.de/cziegler/BX/.
    • (2004) Book-Crossing Dataset
    • Ziegler, C.-N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.