메뉴 건너뛰기




Volumn 44, Issue 6, 2016, Pages 2090-2102

Advanced Bioinks for 3D Printing: A Materials Science Perspective

Author keywords

3D printing; Bioinks; Hydrogels; Interpenetrating networks (IPNs); Nanomaterials; Supramolecular

Indexed keywords

CROSSLINKING; DESIGN; HYDROGELS; INTERPENETRATING POLYMER NETWORKS; NANOSTRUCTURED MATERIALS; PRINTING; SCAFFOLDS (BIOLOGY); SHEAR THINNING; SUPRAMOLECULAR CHEMISTRY;

EID: 84968665431     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-016-1638-y     Document Type: Review
Times cited : (548)

References (69)
  • 1
    • 33748321119 scopus 로고    scopus 로고
    • Alginate hydrogels as biomaterials
    • COI: 1:CAS:528:DC%2BD28XovVWhu78%3D, PID: 16881042
    • Augst, A. D., H. J. Kong, and D. J. Mooney. Alginate hydrogels as biomaterials. Macromol. Biosci. 6:623–633, 2006.
    • (2006) Macromol. Biosci. , vol.6 , pp. 623-633
    • Augst, A.D.1    Kong, H.J.2    Mooney, D.J.3
  • 2
    • 84872518079 scopus 로고    scopus 로고
    • Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds
    • PID: 23336091
    • Azagarsamy, M. A., and K. S. Anseth. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett. 2:5–9, 2012.
    • (2012) ACS Macro Lett. , vol.2 , pp. 5-9
    • Azagarsamy, M.A.1    Anseth, K.S.2
  • 3
    • 84931566221 scopus 로고    scopus 로고
    • 4D printing with mechanically robust, thermally actuating hydrogels
    • COI: 1:CAS:528:DC%2BC2MXmtlGkurg%3D, PID: 25864515
    • Bakarich, S. E., R. Gorkin, M. I. H. Panhuis, and G. M. Spinks. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36:1211–1217, 2015.
    • (2015) Macromol. Rapid Commun. , vol.36 , pp. 1211-1217
    • Bakarich, S.E.1    Gorkin, R.2    Panhuis, M.I.H.3    Spinks, G.M.4
  • 7
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
    • Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.
    • (2012) Biomaterials , vol.33 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Van Vlierberghe, S.4    Dubruel, P.5
  • 8
    • 84922880398 scopus 로고    scopus 로고
    • Bioinspired polymeric nanocomposites for regenerative medicine
    • COI: 1:CAS:528:DC%2BC2cXhvFGit7jE
    • Carrow, J. K., and A. K. Gaharwar. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys. 216:248–264, 2015.
    • (2015) Macromol. Chem. Phys. , vol.216 , pp. 248-264
    • Carrow, J.K.1    Gaharwar, A.K.2
  • 9
    • 84929492240 scopus 로고    scopus 로고
    • Fundamentals of double network hydrogels
    • COI: 1:CAS:528:DC%2BC2MXls1ams78%3D
    • Chen, Q., H. Chen, L. Zhu, and J. Zheng. Fundamentals of double network hydrogels. J Mater Chem B 3:3654–3676, 2015.
    • (2015) J. Mater. Chem. B. , vol.3 , pp. 3654-3676
    • Chen, Q.1    Chen, H.2    Zhu, L.3    Zheng, J.4
  • 10
    • 84897050501 scopus 로고    scopus 로고
    • Fracture of the physically cross-linked first network in hybrid double network hydrogels
    • COI: 1:CAS:528:DC%2BC2cXjslGisr4%3D
    • Chen, Q., L. Zhu, L. Huang, H. Chen, K. Xu, Y. Tan, P. Wang, and J. Zheng. Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 47:2140–2148, 2014.
    • (2014) Macromolecules , vol.47 , pp. 2140-2148
    • Chen, Q.1    Zhu, L.2    Huang, L.3    Chen, H.4    Xu, K.5    Tan, Y.6    Wang, P.7    Zheng, J.8
  • 11
    • 84942302489 scopus 로고    scopus 로고
    • Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects
    • COI: 1:CAS:528:DC%2BC2MXhs1GksbvI, PID: 26459239
    • Chimene, D., D. L. Alge, and A. K. Gaharwar. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27:7261–7284, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 7261-7284
    • Chimene, D.1    Alge, D.L.2    Gaharwar, A.K.3
  • 12
    • 84885332219 scopus 로고    scopus 로고
    • Bio-ink properties and printability for extrusion printing living cells
    • COI: 1:CAS:528:DC%2BC3sXovVSmsLs%3D
    • Chung, J. H., S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S. E. Moulton, and G. G. Wallace. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 1:763–773, 2013.
    • (2013) Biomater. Sci. , vol.1 , pp. 763-773
    • Chung, J.H.1    Naficy, S.2    Yue, Z.3    Kapsa, R.4    Quigley, A.5    Moulton, S.E.6    Wallace, G.G.7
  • 13
    • 67649920749 scopus 로고    scopus 로고
    • Growth factors, matrices, and forces combine and control stem cells
    • COI: 1:CAS:528:DC%2BD1MXnsFOmtbo%3D, PID: 19556500
    • Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.
    • (2009) Science , vol.324 , pp. 1673-1677
    • Discher, D.E.1    Mooney, D.J.2    Zandstra, P.W.3
  • 14
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • COI: 1:CAS:528:DC%2BC2cXksVyksQ%3D%3D, PID: 24334142
    • Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.
    • (2014) Acta Biomater. , vol.10 , pp. 1836-1846
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 15
    • 84879222783 scopus 로고    scopus 로고
    • Bioprinting: functional droplet networks
    • COI: 1:CAS:528:DC%2BC3sXnvFyqt7g%3D, PID: 23695742
    • Durmus, N. G., S. Tasoglu, and U. Demirci. Bioprinting: functional droplet networks. Nat. Mater. 12:478–479, 2013.
    • (2013) Nat. Mater. , vol.12 , pp. 478-479
    • Durmus, N.G.1    Tasoglu, S.2    Demirci, U.3
  • 16
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • COI: 1:CAS:528:DC%2BD28Xpt1aktbg%3D, PID: 16923388
    • Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 17
    • 77949511844 scopus 로고    scopus 로고
    • Bioinspired materials for controlling stem cell fate
    • COI: 1:CAS:528:DC%2BC3cXjtFOq, PID: 20043634
    • Fisher, O. Z., A. Khademhosseini, R. Langer, and N. A. Peppas. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43:419–428, 2010.
    • (2010) Acc. Chem. Res. , vol.43 , pp. 419-428
    • Fisher, O.Z.1    Khademhosseini, A.2    Langer, R.3    Peppas, N.A.4
  • 18
    • 84955672638 scopus 로고    scopus 로고
    • 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends
    • COI: 1:CAS:528:DC%2BC2MXhvFenurzO, PID: 26607415
    • Gaharwar, A. K., A. Arpanaei, T. L. Andresen, and A. Dolatshahi-Pirouz. 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv. Mater. 28:771–781, 2016.
    • (2016) Adv. Mater. , vol.28 , pp. 771-781
    • Gaharwar, A.K.1    Arpanaei, A.2    Andresen, T.L.3    Dolatshahi-Pirouz, A.4
  • 20
    • 84892818677 scopus 로고    scopus 로고
    • Nanocomposite hydrogels for biomedical applications
    • COI: 1:CAS:528:DC%2BC3sXhvVyisLfN, PID: 24264728
    • Gaharwar, A. K., N. A. Peppas, and A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111:441–453, 2014.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 441-453
    • Gaharwar, A.K.1    Peppas, N.A.2    Khademhosseini, A.3
  • 21
    • 80055104021 scopus 로고    scopus 로고
    • Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles
    • COI: 1:CAS:528:DC%2BC3MXhsVSkt77I, PID: 21839864
    • Gaharwar, A. K., C. P. Rivera, C.-J. Wu, and G. Schmidt. Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta Biomater. 7:4139–4148, 2011.
    • (2011) Acta Biomater. , vol.7 , pp. 4139-4148
    • Gaharwar, A.K.1    Rivera, C.P.2    Wu, C.-J.3    Schmidt, G.4
  • 22
    • 84908496206 scopus 로고    scopus 로고
    • Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
    • COI: 1:CAS:528:DC%2BC2cXhsFWitrvF, PID: 25130390
    • Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.
    • (2014) Biotechnol. J. , vol.9 , pp. 1304-1311
    • Gao, G.1    Schilling, A.F.2    Yonezawa, T.3    Wang, J.4    Dai, G.5    Cui, X.6
  • 23
    • 84908159718 scopus 로고    scopus 로고
    • Natural polymers for the microencapsulation of cells
    • PID: 25232055
    • Gasperini, L., J. F. Mano, and R. L. Reis. Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11:20140817, 2014.
    • (2014) J. R. Soc. Interface , vol.11 , pp. 20140817
    • Gasperini, L.1    Mano, J.F.2    Reis, R.L.3
  • 24
    • 84887653585 scopus 로고    scopus 로고
    • Graphene-based nanomaterials for drug delivery and tissue engineering
    • COI: 1:CAS:528:DC%2BC3sXhvF2rsr3P, PID: 24161530
    • Goenka, S., V. Sant, and S. Sant. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173:75–88, 2014.
    • (2014) J. Control. Release , vol.173 , pp. 75-88
    • Goenka, S.1    Sant, V.2    Sant, S.3
  • 25
    • 67649195858 scopus 로고    scopus 로고
    • Control of stem cell fate by physical interactions with the extracellular matrix
    • COI: 1:CAS:528:DC%2BD1MXoslKgs7k%3D, PID: 19570510
    • Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.
    • (2009) Cell Stem Cell , vol.5 , pp. 17-26
    • Guilak, F.1    Cohen, D.M.2    Estes, B.T.3    Gimble, J.M.4    Liedtke, W.5    Chen, C.S.6
  • 26
    • 84859587794 scopus 로고    scopus 로고
    • Super tough double network hydrogels and their application as biomaterials
    • COI: 1:CAS:528:DC%2BC38XltVakuro%3D
    • Haque, M. A., T. Kurokawa, and J. P. Gong. Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822, 2012.
    • (2012) Polymer , vol.53 , pp. 1805-1822
    • Haque, M.A.1    Kurokawa, T.2    Gong, J.P.3
  • 28
    • 84940977939 scopus 로고    scopus 로고
    • Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
    • COI: 1:CAS:528:DC%2BC2MXhtFOrtb%2FE, PID: 26177925
    • Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 5075-5079
    • Highley, C.B.1    Rodell, C.B.2    Burdick, J.A.3
  • 30
    • 84870253512 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.
    • (2012) Adv. Drug Deliv. Rev. , vol.64 , pp. 18-23
    • Hoffman, A.S.1
  • 31
    • 84937020271 scopus 로고    scopus 로고
    • 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures
    • COI: 1:CAS:528:DC%2BC2MXpt1art7g%3D, PID: 26033288
    • Hong, S., D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27:4035–4040, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 4035-4040
    • Hong, S.1    Sycks, D.2    Chan, H.F.3    Lin, S.4    Lopez, G.P.5    Guilak, F.6    Leong, K.W.7    Zhao, X.8
  • 32
    • 34547291175 scopus 로고    scopus 로고
    • A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel
    • COI: 1:CAS:528:DC%2BD2sXnsVagsbw%3D
    • Huang, T., H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19:1622–1626, 2007.
    • (2007) Adv. Mater. , vol.19 , pp. 1622-1626
    • Huang, T.1    Xu, H.G.2    Jiao, K.X.3    Zhu, L.P.4    Brown, H.R.5    Wang, H.L.6
  • 33
    • 84989891118 scopus 로고    scopus 로고
    • Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content
    • COI: 1:CAS:528:DC%2BC2MXitVejtL%2FE, PID: 26670176
    • Jaiswal, M. K., J. R. Xavier, J. K. Carrow, P. Desai, D. Alge, and A. K. Gaharwar. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10:246–256, 2016.
    • (2016) ACS Nano , vol.10 , pp. 246-256
    • Jaiswal, M.K.1    Xavier, J.R.2    Carrow, J.K.3    Desai, P.4    Alge, D.5    Gaharwar, A.K.6
  • 35
    • 84960905071 scopus 로고    scopus 로고
    • A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
    • COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
    • Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 312-319
    • Kang, H.-W.1    Lee, S.J.2    Ko, I.K.3    Kengla, C.4    Yoo, J.J.5    Atala, A.6
  • 36
    • 84938748917 scopus 로고    scopus 로고
    • Nanomaterials for engineering stem cell responses
    • COI: 1:CAS:528:DC%2BC2MXovVCks7k%3D, PID: 26010739
    • Kerativitayanan, P., J. K. Carrow, and A. K. Gaharwar. Nanomaterials for engineering stem cell responses. Adv. Healthc Mater. 4:1600–1627, 2015.
    • (2015) Adv. Healthc Mater. , vol.4 , pp. 1600-1627
    • Kerativitayanan, P.1    Carrow, J.K.2    Gaharwar, A.K.3
  • 37
    • 84925120402 scopus 로고    scopus 로고
    • A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation
    • COI: 1:CAS:528:DC%2BC2cXhs1Klu7bE, PID: 25260606
    • Kesti, M., M. Müller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, and M. Zenobi-Wong. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 11:162–172, 2015.
    • (2015) Acta Biomater. , vol.11 , pp. 162-172
    • Kesti, M.1    Müller, M.2    Becher, J.3    Schnabelrauch, M.4    D’Este, M.5    Eglin, D.6    Zenobi-Wong, M.7
  • 38
    • 84929224464 scopus 로고    scopus 로고
    • An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing
    • COI: 1:CAS:528:DC%2BC2MXntlGmt7Y%3D
    • Kirchmajer, D. M., R. Gorkin, III, and M. I. H. Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chem. B 3:4105–4117, 2015.
    • (2015) J. Mater. Chem. B , vol.3 , pp. 4105-4117
    • Kirchmajer, D.M.1    Gorkin, R.2    Panhuis, M.I.H.3
  • 39
    • 84903787480 scopus 로고    scopus 로고
    • Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour
    • COI: 1:CAS:528:DC%2BC2cXhtV2qtLfL
    • Kirchmajer, D. M., and M. I. H. Panhuis. Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour. J. Mater. Chem. B 2:4694–4702, 2014.
    • (2014) J. Mater. Chem. B , vol.2 , pp. 4694-4702
    • Kirchmajer, D.M.1    Panhuis, M.I.H.2
  • 40
    • 77955666383 scopus 로고    scopus 로고
    • Mechanical properties of cellularly responsive hydrogels and their experimental determination
    • COI: 1:CAS:528:DC%2BC3cXhtVSisLzO, PID: 20473984
    • Kloxin, A. M., C. J. Kloxin, C. N. Bowman, and K. S. Anseth. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22:3484–3494, 2010.
    • (2010) Adv. Mater. , vol.22 , pp. 3484-3494
    • Kloxin, A.M.1    Kloxin, C.J.2    Bowman, C.N.3    Anseth, K.S.4
  • 41
    • 84903737158 scopus 로고    scopus 로고
    • Creating perfused functional vascular channels using 3D bio-printing technology
    • COI: 1:CAS:528:DC%2BC2cXhtV2qt7jM, PID: 24965886
    • Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.
    • (2014) Biomaterials , vol.35 , pp. 8092-8102
    • Lee, V.K.1    Kim, D.Y.2    Ngo, H.3    Lee, Y.4    Seo, L.5    Yoo, S.-S.6    Vincent, P.A.7    Dai, G.8
  • 43
    • 84962069511 scopus 로고    scopus 로고
    • A step towards clinical translation of biofabrication
    • COI: 1:CAS:528:DC%2BC28XksVWmsLg%3D, PID: 27038823
    • Malda, J., and J. Groll. A step towards clinical translation of biofabrication. Trends Biotechnol. 34:356, 2016.
    • (2016) Trends Biotechnol. , vol.34 , pp. 356
    • Malda, J.1    Groll, J.2
  • 45
    • 84929176653 scopus 로고    scopus 로고
    • 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
    • COI: 1:CAS:528:DC%2BC2MXltFSnurc%3D, PID: 25806996
    • Markstedt, K., A. Mantas, I. Tournier, H. C. Martínez Ávila, D. Hägg, and P. Gatenholm. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.
    • (2015) Biomacromolecules , vol.16 , pp. 1489-1496
    • Markstedt, K.1    Mantas, A.2    Tournier, I.3    Martínez Ávila, H.C.4    Hägg, D.5    Gatenholm, P.6
  • 47
    • 33646567447 scopus 로고    scopus 로고
    • Review: bioprinting: a beginning
    • PID: 16674278
    • Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.
    • (2006) Tissue Eng. , vol.12 , pp. 631-634
    • Mironov, V.1    Reis, N.2    Derby, B.3
  • 49
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
    • Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 50
    • 84872681726 scopus 로고    scopus 로고
    • Evaluation of hydrogels for bio-printing applications
    • COI: 1:CAS:528:DC%2BC38XhslWktrvP
    • Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101A:272–284, 2013.
    • (2013) J. Biomed. Mater. Res. A , vol.101A , pp. 272-284
    • Murphy, S.V.1    Skardal, A.2    Atala, A.3
  • 51
    • 84966327438 scopus 로고    scopus 로고
    • Engineered nanomaterials for infection control and healing acute and chronic wounds
    • COI: 1:CAS:528:DC%2BC28XltlOmsL4%3D, PID: 27043006
    • Parani, M., G. Lokhande, A. Singh, and A. K. Gaharwar. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces 8:10049–10069, 2016.
    • (2016) ACS Appl. Mater. Interfaces , vol.8 , pp. 10049-10069
    • Parani, M.1    Lokhande, G.2    Singh, A.3    Gaharwar, A.K.4
  • 52
    • 84975722521 scopus 로고    scopus 로고
    • 3D bioprinting of tissue/organ models
    • COI: 1:CAS:528:DC%2BC28Xisl2hsL0%3D
    • Pati, F., J. Gantelius, and H. A. Svahn. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed. 55:4650–4665, 2016.
    • (2016) Angew. Chem. Int. Ed. , vol.55 , pp. 4650-4665
    • Pati, F.1    Gantelius, J.2    Svahn, H.A.3
  • 53
    • 84901923061 scopus 로고    scopus 로고
    • Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
    • COI: 1:CAS:528:DC%2BC2cXhvF2mu77P, PID: 24887553
    • Pati, F., J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.
    • (2014) Nat. Commun. , vol.5 , pp. 3935
    • Pati, F.1    Jang, J.2    Ha, D.-H.3    Won Kim, S.4    Rhie, J.-W.5    Shim, J.-H.6    Kim, D.-H.7    Cho, D.-W.8
  • 54
    • 84929861434 scopus 로고    scopus 로고
    • Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering
    • COI: 1:CAS:528:DC%2BC2MXoslOksLc%3D, PID: 25996115
    • Paul, A. Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine 10:1371–1374, 2015.
    • (2015) Nanomedicine , vol.10 , pp. 1371-1374
    • Paul, A.1
  • 55
    • 84939565838 scopus 로고    scopus 로고
    • Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues
    • COI: 1:CAS:528:DC%2BC2MXhtFyqsLbF
    • Peak, C. W., J. K. Carrow, A. Thakur, A. Singh, and A. K. Gaharwar. Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell. Mol. Bioeng. 8:404–415, 2015.
    • (2015) Cell. Mol. Bioeng. , vol.8 , pp. 404-415
    • Peak, C.W.1    Carrow, J.K.2    Thakur, A.3    Singh, A.4    Gaharwar, A.K.5
  • 57
    • 0032941232 scopus 로고    scopus 로고
    • Alginate hydrogels as synthetic extracellular matrix materials
    • COI: 1:CAS:528:DyaK1MXjtlWnug%3D%3D, PID: 9916770
    • Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53, 1999.
    • (1999) Biomaterials , vol.20 , pp. 45-53
    • Rowley, J.A.1    Madlambayan, G.2    Mooney, D.J.3
  • 58
    • 84923829773 scopus 로고    scopus 로고
    • A multimaterial bioink method for 3D printing tunable, Cell-compatible hydrogels
    • COI: 1:CAS:528:DC%2BC2MXptFCksA%3D%3D, PID: 25641220
    • Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, Cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 1607-1614
    • Rutz, A.L.1    Hyland, K.E.2    Jakus, A.E.3    Burghardt, W.R.4    Shah, R.N.5
  • 59
    • 84925745420 scopus 로고    scopus 로고
    • Biomaterials for Integration with 3-D Bioprinting
    • PID: 25476164
    • Skardal, A., and A. Atala. Biomaterials for Integration with 3-D Bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.
    • (2015) Ann. Biomed. Eng. , vol.43 , pp. 730-746
    • Skardal, A.1    Atala, A.2
  • 61
    • 84948663175 scopus 로고    scopus 로고
    • Bioprinting of 3D hydrogels
    • COI: 1:CAS:528:DC%2BC2MXhtVSgsLjO, PID: 26066320
    • Stanton, M., J. Samitier, and S. Sánchez. Bioprinting of 3D hydrogels. Lab Chip 15:3111–3115, 2015.
    • (2015) Lab Chip , vol.15 , pp. 3111-3115
    • Stanton, M.1    Samitier, J.2    Sánchez, S.3
  • 62
    • 84874060439 scopus 로고    scopus 로고
    • Double-network strategy improves fracture properties of chondroitin sulfate networks
    • COI: 1:CAS:528:DC%2BC3sXhtFWmtbw%3D
    • Suekama, T. C., J. Hu, T. Kurokawa, J. P. Gong, and S. H. Gehrke. Double-network strategy improves fracture properties of chondroitin sulfate networks. ACS Macro Lett. 2:137–140, 2013.
    • (2013) ACS Macro Lett. , vol.2 , pp. 137-140
    • Suekama, T.C.1    Hu, J.2    Kurokawa, T.3    Gong, J.P.4    Gehrke, S.H.5
  • 64
    • 84891835083 scopus 로고    scopus 로고
    • 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide
    • COI: 1:CAS:528:DC%2BC3sXhslygsLrN, PID: 24227691
    • Thiele, J., Y. Ma, S. Bruekers, S. Ma, and W. T. Huck. 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26:125–148, 2014.
    • (2014) Adv. Mater. , vol.26 , pp. 125-148
    • Thiele, J.1    Ma, Y.2    Bruekers, S.3    Ma, S.4    Huck, W.T.5
  • 65
    • 67650169752 scopus 로고    scopus 로고
    • Hydrogels as extracellular matrix mimics for 3D cell culture
    • COI: 1:CAS:528:DC%2BD1MXnslejtb8%3D, PID: 19472329
    • Tibbitt, M. W., and K. S. Anseth. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103:655–663, 2009.
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 655-663
    • Tibbitt, M.W.1    Anseth, K.S.2
  • 66
    • 84925651941 scopus 로고    scopus 로고
    • Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach
    • COI: 1:CAS:528:DC%2BC2MXislSgsLk%3D, PID: 25674809
    • Xavier, J. R., T. Thakur, P. Desai, M. K. Jaiswal, N. Sears, E. Cosgriff-Hernandez, R. Kaunas, and A. K. Gaharwar. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118, 2015.
    • (2015) ACS Nano , vol.9 , pp. 3109-3118
    • Xavier, J.R.1    Thakur, T.2    Desai, P.3    Jaiswal, M.K.4    Sears, N.5    Cosgriff-Hernandez, E.6    Kaunas, R.7    Gaharwar, A.K.8
  • 67
    • 84930886019 scopus 로고    scopus 로고
    • Application of 3D biomimetic models in drug delivery and regenerative medicine
    • COI: 1:CAS:528:DC%2BC2MXjslyhsr4%3D, PID: 25594404
    • Xu, Y., and X. Wang. Application of 3D biomimetic models in drug delivery and regenerative medicine. Curr. Pharm. Des. 21:1618–1626, 2015.
    • (2015) Curr. Pharm. Des. , vol.21 , pp. 1618-1626
    • Xu, Y.1    Wang, X.2
  • 68
    • 84938136982 scopus 로고    scopus 로고
    • Supramolecular polymers: historical development, preparation, characterization, and functions
    • COI: 1:CAS:528:DC%2BC2MXktlCjsb0%3D, PID: 25768045
    • Yang, L., X. Tan, Z. Wang, and X. Zhang. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115:7196–7239, 2015.
    • (2015) Chem. Rev. , vol.115 , pp. 7196-7239
    • Yang, L.1    Tan, X.2    Wang, Z.3    Zhang, X.4
  • 69
    • 84962210462 scopus 로고    scopus 로고
    • 3D printing of functional biomaterials for tissue engineering
    • COI: 1:CAS:528:DC%2BC28XltFKhu7c%3D, PID: 27043763
    • Zhu, W., X. Ma, M. Gou, D. Mei, K. Zhang, and S. Chen. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40:103–112, 2016.
    • (2016) Curr. Opin. Biotechnol. , vol.40 , pp. 103-112
    • Zhu, W.1    Ma, X.2    Gou, M.3    Mei, D.4    Zhang, K.5    Chen, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.