-
1
-
-
33748321119
-
Alginate hydrogels as biomaterials
-
COI: 1:CAS:528:DC%2BD28XovVWhu78%3D, PID: 16881042
-
Augst, A. D., H. J. Kong, and D. J. Mooney. Alginate hydrogels as biomaterials. Macromol. Biosci. 6:623–633, 2006.
-
(2006)
Macromol. Biosci.
, vol.6
, pp. 623-633
-
-
Augst, A.D.1
Kong, H.J.2
Mooney, D.J.3
-
2
-
-
84872518079
-
Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds
-
PID: 23336091
-
Azagarsamy, M. A., and K. S. Anseth. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett. 2:5–9, 2012.
-
(2012)
ACS Macro Lett.
, vol.2
, pp. 5-9
-
-
Azagarsamy, M.A.1
Anseth, K.S.2
-
3
-
-
84931566221
-
4D printing with mechanically robust, thermally actuating hydrogels
-
COI: 1:CAS:528:DC%2BC2MXmtlGkurg%3D, PID: 25864515
-
Bakarich, S. E., R. Gorkin, M. I. H. Panhuis, and G. M. Spinks. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36:1211–1217, 2015.
-
(2015)
Macromol. Rapid Commun.
, vol.36
, pp. 1211-1217
-
-
Bakarich, S.E.1
Gorkin, R.2
Panhuis, M.I.H.3
Spinks, G.M.4
-
4
-
-
84899520611
-
Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
-
PID: 24695367
-
Bertassoni, L. E., J. C. Cardoso, V. Manoharan, A. L. Cristino, N. S. Bhise, W. A. Araujo, P. Zorlutuna, N. E. Vrana, A. M. Ghaemmaghami, and M. R. Dokmeci. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6:024105, 2014.
-
(2014)
Biofabrication
, vol.6
, pp. 024105
-
-
Bertassoni, L.E.1
Cardoso, J.C.2
Manoharan, V.3
Cristino, A.L.4
Bhise, N.S.5
Araujo, W.A.6
Zorlutuna, P.7
Vrana, N.E.8
Ghaemmaghami, A.M.9
Dokmeci, M.R.10
-
5
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
COI: 1:CAS:528:DC%2BC2cXptVeht7Y%3D, PID: 24860845
-
Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, and Y. Yang. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
Barabaschi, G.7
Demarchi, D.8
Dokmeci, M.R.9
Yang, Y.10
-
6
-
-
85038438211
-
Writing in the granular gel medium
-
PID: 26601274
-
Bhattacharjee, T., S. M. Zehnder, K. G. Rowe, S. Jain, R. M. Nixon, W. G. Sawyer, and T. E. Angelini. Writing in the granular gel medium. Sci. Adv. 1:e1500655, 2015.
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500655
-
-
Bhattacharjee, T.1
Zehnder, S.M.2
Rowe, K.G.3
Jain, S.4
Nixon, R.M.5
Sawyer, W.G.6
Angelini, T.E.7
-
7
-
-
84862869528
-
A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
-
COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
-
Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
Van Vlierberghe, S.4
Dubruel, P.5
-
8
-
-
84922880398
-
Bioinspired polymeric nanocomposites for regenerative medicine
-
COI: 1:CAS:528:DC%2BC2cXhvFGit7jE
-
Carrow, J. K., and A. K. Gaharwar. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys. 216:248–264, 2015.
-
(2015)
Macromol. Chem. Phys.
, vol.216
, pp. 248-264
-
-
Carrow, J.K.1
Gaharwar, A.K.2
-
9
-
-
84929492240
-
Fundamentals of double network hydrogels
-
COI: 1:CAS:528:DC%2BC2MXls1ams78%3D
-
Chen, Q., H. Chen, L. Zhu, and J. Zheng. Fundamentals of double network hydrogels. J Mater Chem B 3:3654–3676, 2015.
-
(2015)
J. Mater. Chem. B.
, vol.3
, pp. 3654-3676
-
-
Chen, Q.1
Chen, H.2
Zhu, L.3
Zheng, J.4
-
10
-
-
84897050501
-
Fracture of the physically cross-linked first network in hybrid double network hydrogels
-
COI: 1:CAS:528:DC%2BC2cXjslGisr4%3D
-
Chen, Q., L. Zhu, L. Huang, H. Chen, K. Xu, Y. Tan, P. Wang, and J. Zheng. Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 47:2140–2148, 2014.
-
(2014)
Macromolecules
, vol.47
, pp. 2140-2148
-
-
Chen, Q.1
Zhu, L.2
Huang, L.3
Chen, H.4
Xu, K.5
Tan, Y.6
Wang, P.7
Zheng, J.8
-
11
-
-
84942302489
-
Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects
-
COI: 1:CAS:528:DC%2BC2MXhs1GksbvI, PID: 26459239
-
Chimene, D., D. L. Alge, and A. K. Gaharwar. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27:7261–7284, 2015.
-
(2015)
Adv. Mater.
, vol.27
, pp. 7261-7284
-
-
Chimene, D.1
Alge, D.L.2
Gaharwar, A.K.3
-
12
-
-
84885332219
-
Bio-ink properties and printability for extrusion printing living cells
-
COI: 1:CAS:528:DC%2BC3sXovVSmsLs%3D
-
Chung, J. H., S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S. E. Moulton, and G. G. Wallace. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 1:763–773, 2013.
-
(2013)
Biomater. Sci.
, vol.1
, pp. 763-773
-
-
Chung, J.H.1
Naficy, S.2
Yue, Z.3
Kapsa, R.4
Quigley, A.5
Moulton, S.E.6
Wallace, G.G.7
-
13
-
-
67649920749
-
Growth factors, matrices, and forces combine and control stem cells
-
COI: 1:CAS:528:DC%2BD1MXnsFOmtbo%3D, PID: 19556500
-
Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.
-
(2009)
Science
, vol.324
, pp. 1673-1677
-
-
Discher, D.E.1
Mooney, D.J.2
Zandstra, P.W.3
-
14
-
-
84898059103
-
Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
-
COI: 1:CAS:528:DC%2BC2cXksVyksQ%3D%3D, PID: 24334142
-
Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.
-
(2014)
Acta Biomater.
, vol.10
, pp. 1836-1846
-
-
Duan, B.1
Kapetanovic, E.2
Hockaday, L.A.3
Butcher, J.T.4
-
15
-
-
84879222783
-
Bioprinting: functional droplet networks
-
COI: 1:CAS:528:DC%2BC3sXnvFyqt7g%3D, PID: 23695742
-
Durmus, N. G., S. Tasoglu, and U. Demirci. Bioprinting: functional droplet networks. Nat. Mater. 12:478–479, 2013.
-
(2013)
Nat. Mater.
, vol.12
, pp. 478-479
-
-
Durmus, N.G.1
Tasoglu, S.2
Demirci, U.3
-
16
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
COI: 1:CAS:528:DC%2BD28Xpt1aktbg%3D, PID: 16923388
-
Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.
-
(2006)
Cell
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
Discher, D.E.4
-
17
-
-
77949511844
-
Bioinspired materials for controlling stem cell fate
-
COI: 1:CAS:528:DC%2BC3cXjtFOq, PID: 20043634
-
Fisher, O. Z., A. Khademhosseini, R. Langer, and N. A. Peppas. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43:419–428, 2010.
-
(2010)
Acc. Chem. Res.
, vol.43
, pp. 419-428
-
-
Fisher, O.Z.1
Khademhosseini, A.2
Langer, R.3
Peppas, N.A.4
-
18
-
-
84955672638
-
3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends
-
COI: 1:CAS:528:DC%2BC2MXhvFenurzO, PID: 26607415
-
Gaharwar, A. K., A. Arpanaei, T. L. Andresen, and A. Dolatshahi-Pirouz. 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv. Mater. 28:771–781, 2016.
-
(2016)
Adv. Mater.
, vol.28
, pp. 771-781
-
-
Gaharwar, A.K.1
Arpanaei, A.2
Andresen, T.L.3
Dolatshahi-Pirouz, A.4
-
19
-
-
84908425671
-
Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage
-
COI: 1:CAS:528:DC%2BC2cXhsFCjtr3P, PID: 25221894
-
Gaharwar, A. K., R. K. Avery, A. Assmann, A. Paul, G. H. McKinley, A. Khademhosseini, and B. D. Olsen. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842, 2014.
-
(2014)
ACS Nano
, vol.8
, pp. 9833-9842
-
-
Gaharwar, A.K.1
Avery, R.K.2
Assmann, A.3
Paul, A.4
McKinley, G.H.5
Khademhosseini, A.6
Olsen, B.D.7
-
20
-
-
84892818677
-
Nanocomposite hydrogels for biomedical applications
-
COI: 1:CAS:528:DC%2BC3sXhvVyisLfN, PID: 24264728
-
Gaharwar, A. K., N. A. Peppas, and A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111:441–453, 2014.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 441-453
-
-
Gaharwar, A.K.1
Peppas, N.A.2
Khademhosseini, A.3
-
21
-
-
80055104021
-
Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles
-
COI: 1:CAS:528:DC%2BC3MXhsVSkt77I, PID: 21839864
-
Gaharwar, A. K., C. P. Rivera, C.-J. Wu, and G. Schmidt. Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta Biomater. 7:4139–4148, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 4139-4148
-
-
Gaharwar, A.K.1
Rivera, C.P.2
Wu, C.-J.3
Schmidt, G.4
-
22
-
-
84908496206
-
Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
-
COI: 1:CAS:528:DC%2BC2cXhsFWitrvF, PID: 25130390
-
Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 1304-1311
-
-
Gao, G.1
Schilling, A.F.2
Yonezawa, T.3
Wang, J.4
Dai, G.5
Cui, X.6
-
23
-
-
84908159718
-
Natural polymers for the microencapsulation of cells
-
PID: 25232055
-
Gasperini, L., J. F. Mano, and R. L. Reis. Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11:20140817, 2014.
-
(2014)
J. R. Soc. Interface
, vol.11
, pp. 20140817
-
-
Gasperini, L.1
Mano, J.F.2
Reis, R.L.3
-
24
-
-
84887653585
-
Graphene-based nanomaterials for drug delivery and tissue engineering
-
COI: 1:CAS:528:DC%2BC3sXhvF2rsr3P, PID: 24161530
-
Goenka, S., V. Sant, and S. Sant. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173:75–88, 2014.
-
(2014)
J. Control. Release
, vol.173
, pp. 75-88
-
-
Goenka, S.1
Sant, V.2
Sant, S.3
-
25
-
-
67649195858
-
Control of stem cell fate by physical interactions with the extracellular matrix
-
COI: 1:CAS:528:DC%2BD1MXoslKgs7k%3D, PID: 19570510
-
Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 17-26
-
-
Guilak, F.1
Cohen, D.M.2
Estes, B.T.3
Gimble, J.M.4
Liedtke, W.5
Chen, C.S.6
-
26
-
-
84859587794
-
Super tough double network hydrogels and their application as biomaterials
-
COI: 1:CAS:528:DC%2BC38XltVakuro%3D
-
Haque, M. A., T. Kurokawa, and J. P. Gong. Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822, 2012.
-
(2012)
Polymer
, vol.53
, pp. 1805-1822
-
-
Haque, M.A.1
Kurokawa, T.2
Gong, J.P.3
-
27
-
-
84882413679
-
Healable supramolecular polymers
-
COI: 1:CAS:528:DC%2BC3sXht1CqtLbI
-
Hart, L. R., J. L. Harries, B. W. Greenland, H. M. Colquhoun, and W. Hayes. Healable supramolecular polymers. Polymer Chemistry 4:4860–4870, 2013.
-
(2013)
Polymer Chemistry
, vol.4
, pp. 4860-4870
-
-
Hart, L.R.1
Harries, J.L.2
Greenland, B.W.3
Colquhoun, H.M.4
Hayes, W.5
-
28
-
-
84940977939
-
Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
-
COI: 1:CAS:528:DC%2BC2MXhtFOrtb%2FE, PID: 26177925
-
Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.
-
(2015)
Adv. Mater.
, vol.27
, pp. 5075-5079
-
-
Highley, C.B.1
Rodell, C.B.2
Burdick, J.A.3
-
29
-
-
85040290621
-
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
-
PID: 26601312
-
Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500758
-
-
Hinton, T.J.1
Jallerat, Q.2
Palchesko, R.N.3
Park, J.H.4
Grodzicki, M.S.5
Shue, H.-J.6
Ramadan, M.H.7
Hudson, A.R.8
Feinberg, A.W.9
-
30
-
-
84870253512
-
Hydrogels for biomedical applications
-
Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 18-23
-
-
Hoffman, A.S.1
-
31
-
-
84937020271
-
3D printing of highly stretchable and tough hydrogels into complex, cellularized structures
-
COI: 1:CAS:528:DC%2BC2MXpt1art7g%3D, PID: 26033288
-
Hong, S., D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27:4035–4040, 2015.
-
(2015)
Adv. Mater.
, vol.27
, pp. 4035-4040
-
-
Hong, S.1
Sycks, D.2
Chan, H.F.3
Lin, S.4
Lopez, G.P.5
Guilak, F.6
Leong, K.W.7
Zhao, X.8
-
32
-
-
34547291175
-
A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel
-
COI: 1:CAS:528:DC%2BD2sXnsVagsbw%3D
-
Huang, T., H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19:1622–1626, 2007.
-
(2007)
Adv. Mater.
, vol.19
, pp. 1622-1626
-
-
Huang, T.1
Xu, H.G.2
Jiao, K.X.3
Zhu, L.P.4
Brown, H.R.5
Wang, H.L.6
-
33
-
-
84989891118
-
Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content
-
COI: 1:CAS:528:DC%2BC2MXitVejtL%2FE, PID: 26670176
-
Jaiswal, M. K., J. R. Xavier, J. K. Carrow, P. Desai, D. Alge, and A. K. Gaharwar. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10:246–256, 2016.
-
(2016)
ACS Nano
, vol.10
, pp. 246-256
-
-
Jaiswal, M.K.1
Xavier, J.R.2
Carrow, J.K.3
Desai, P.4
Alge, D.5
Gaharwar, A.K.6
-
34
-
-
79952011307
-
Tissue engineering by self-assembly and bio-printing of living cells
-
PID: 20811127
-
Jakab, K., C. Norotte, F. Marga, K. Murphy, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001, 2010.
-
(2010)
Biofabrication
, vol.2
, pp. 022001
-
-
Jakab, K.1
Norotte, C.2
Marga, F.3
Murphy, K.4
Vunjak-Novakovic, G.5
Forgacs, G.6
-
35
-
-
84960905071
-
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
-
COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
-
Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 312-319
-
-
Kang, H.-W.1
Lee, S.J.2
Ko, I.K.3
Kengla, C.4
Yoo, J.J.5
Atala, A.6
-
36
-
-
84938748917
-
Nanomaterials for engineering stem cell responses
-
COI: 1:CAS:528:DC%2BC2MXovVCks7k%3D, PID: 26010739
-
Kerativitayanan, P., J. K. Carrow, and A. K. Gaharwar. Nanomaterials for engineering stem cell responses. Adv. Healthc Mater. 4:1600–1627, 2015.
-
(2015)
Adv. Healthc Mater.
, vol.4
, pp. 1600-1627
-
-
Kerativitayanan, P.1
Carrow, J.K.2
Gaharwar, A.K.3
-
37
-
-
84925120402
-
A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation
-
COI: 1:CAS:528:DC%2BC2cXhs1Klu7bE, PID: 25260606
-
Kesti, M., M. Müller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, and M. Zenobi-Wong. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 11:162–172, 2015.
-
(2015)
Acta Biomater.
, vol.11
, pp. 162-172
-
-
Kesti, M.1
Müller, M.2
Becher, J.3
Schnabelrauch, M.4
D’Este, M.5
Eglin, D.6
Zenobi-Wong, M.7
-
38
-
-
84929224464
-
An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing
-
COI: 1:CAS:528:DC%2BC2MXntlGmt7Y%3D
-
Kirchmajer, D. M., R. Gorkin, III, and M. I. H. Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chem. B 3:4105–4117, 2015.
-
(2015)
J. Mater. Chem. B
, vol.3
, pp. 4105-4117
-
-
Kirchmajer, D.M.1
Gorkin, R.2
Panhuis, M.I.H.3
-
39
-
-
84903787480
-
Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour
-
COI: 1:CAS:528:DC%2BC2cXhtV2qtLfL
-
Kirchmajer, D. M., and M. I. H. Panhuis. Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour. J. Mater. Chem. B 2:4694–4702, 2014.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 4694-4702
-
-
Kirchmajer, D.M.1
Panhuis, M.I.H.2
-
40
-
-
77955666383
-
Mechanical properties of cellularly responsive hydrogels and their experimental determination
-
COI: 1:CAS:528:DC%2BC3cXhtVSisLzO, PID: 20473984
-
Kloxin, A. M., C. J. Kloxin, C. N. Bowman, and K. S. Anseth. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22:3484–3494, 2010.
-
(2010)
Adv. Mater.
, vol.22
, pp. 3484-3494
-
-
Kloxin, A.M.1
Kloxin, C.J.2
Bowman, C.N.3
Anseth, K.S.4
-
41
-
-
84903737158
-
Creating perfused functional vascular channels using 3D bio-printing technology
-
COI: 1:CAS:528:DC%2BC2cXhtV2qt7jM, PID: 24965886
-
Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 8092-8102
-
-
Lee, V.K.1
Kim, D.Y.2
Ngo, H.3
Lee, Y.4
Seo, L.5
Yoo, S.-S.6
Vincent, P.A.7
Dai, G.8
-
42
-
-
84901016012
-
Design and fabrication of human skin by three-dimensional bioprinting
-
PID: 24188635
-
Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S.-S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods 20:473–484, 2013.
-
(2013)
Tissue Eng. Part C Methods
, vol.20
, pp. 473-484
-
-
Lee, V.1
Singh, G.2
Trasatti, J.P.3
Bjornsson, C.4
Xu, X.5
Tran, T.N.6
Yoo, S.-S.7
Dai, G.8
Karande, P.9
-
43
-
-
84962069511
-
A step towards clinical translation of biofabrication
-
COI: 1:CAS:528:DC%2BC28XksVWmsLg%3D, PID: 27038823
-
Malda, J., and J. Groll. A step towards clinical translation of biofabrication. Trends Biotechnol. 34:356, 2016.
-
(2016)
Trends Biotechnol.
, vol.34
, pp. 356
-
-
Malda, J.1
Groll, J.2
-
44
-
-
84884903697
-
25th anniversary article: engineering hydrogels for biofabrication
-
COI: 1:CAS:528:DC%2BC3sXhtlansLrK, PID: 24038336
-
Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
Jüngst, T.4
Hennink, W.E.5
Dhert, W.J.6
Groll, J.7
Hutmacher, D.W.8
-
45
-
-
84929176653
-
3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
-
COI: 1:CAS:528:DC%2BC2MXltFSnurc%3D, PID: 25806996
-
Markstedt, K., A. Mantas, I. Tournier, H. C. Martínez Ávila, D. Hägg, and P. Gatenholm. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.
-
(2015)
Biomacromolecules
, vol.16
, pp. 1489-1496
-
-
Markstedt, K.1
Mantas, A.2
Tournier, I.3
Martínez Ávila, H.C.4
Hägg, D.5
Gatenholm, P.6
-
46
-
-
84862648665
-
Additive manufacturing of tissues and organs
-
COI: 1:CAS:528:DC%2BC38XovFWrtrk%3D
-
Melchels, F. P., M. A. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37:1079–1104, 2012.
-
(2012)
Prog. Polym. Sci.
, vol.37
, pp. 1079-1104
-
-
Melchels, F.P.1
Domingos, M.A.2
Klein, T.J.3
Malda, J.4
Bartolo, P.J.5
Hutmacher, D.W.6
-
47
-
-
33646567447
-
Review: bioprinting: a beginning
-
PID: 16674278
-
Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.
-
(2006)
Tissue Eng.
, vol.12
, pp. 631-634
-
-
Mironov, V.1
Reis, N.2
Derby, B.3
-
48
-
-
60549108145
-
Organ printing: tissue spheroids as building blocks
-
COI: 1:CAS:528:DC%2BD1MXisVCmuro%3D, PID: 19176247
-
Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 2164-2174
-
-
Mironov, V.1
Visconti, R.P.2
Kasyanov, V.3
Forgacs, G.4
Drake, C.J.5
Markwald, R.R.6
-
49
-
-
84905725612
-
3D bioprinting of tissues and organs
-
COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
-
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
50
-
-
84872681726
-
Evaluation of hydrogels for bio-printing applications
-
COI: 1:CAS:528:DC%2BC38XhslWktrvP
-
Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101A:272–284, 2013.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101A
, pp. 272-284
-
-
Murphy, S.V.1
Skardal, A.2
Atala, A.3
-
51
-
-
84966327438
-
Engineered nanomaterials for infection control and healing acute and chronic wounds
-
COI: 1:CAS:528:DC%2BC28XltlOmsL4%3D, PID: 27043006
-
Parani, M., G. Lokhande, A. Singh, and A. K. Gaharwar. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces 8:10049–10069, 2016.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 10049-10069
-
-
Parani, M.1
Lokhande, G.2
Singh, A.3
Gaharwar, A.K.4
-
52
-
-
84975722521
-
3D bioprinting of tissue/organ models
-
COI: 1:CAS:528:DC%2BC28Xisl2hsL0%3D
-
Pati, F., J. Gantelius, and H. A. Svahn. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed. 55:4650–4665, 2016.
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 4650-4665
-
-
Pati, F.1
Gantelius, J.2
Svahn, H.A.3
-
53
-
-
84901923061
-
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
-
COI: 1:CAS:528:DC%2BC2cXhvF2mu77P, PID: 24887553
-
Pati, F., J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3935
-
-
Pati, F.1
Jang, J.2
Ha, D.-H.3
Won Kim, S.4
Rhie, J.-W.5
Shim, J.-H.6
Kim, D.-H.7
Cho, D.-W.8
-
54
-
-
84929861434
-
Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering
-
COI: 1:CAS:528:DC%2BC2MXoslOksLc%3D, PID: 25996115
-
Paul, A. Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine 10:1371–1374, 2015.
-
(2015)
Nanomedicine
, vol.10
, pp. 1371-1374
-
-
Paul, A.1
-
55
-
-
84939565838
-
Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues
-
COI: 1:CAS:528:DC%2BC2MXhtFyqsLbF
-
Peak, C. W., J. K. Carrow, A. Thakur, A. Singh, and A. K. Gaharwar. Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell. Mol. Bioeng. 8:404–415, 2015.
-
(2015)
Cell. Mol. Bioeng.
, vol.8
, pp. 404-415
-
-
Peak, C.W.1
Carrow, J.K.2
Thakur, A.3
Singh, A.4
Gaharwar, A.K.5
-
56
-
-
85136708182
-
-
Biofabrication Hydrogel Constr., Springer, Dordrecht
-
Pereira, R. F., H. A. Almeida, and P. J. Bártolo. Drug delivery systems: advanced technologies potentially applicable in personalised treatmentBiofabrication Hydrogel Constr., Dordrecht: Springer, pp. 225–254, 2013.
-
(2013)
Drug delivery systems: advanced technologies potentially applicable in personalised treatment
, pp. 225-254
-
-
Pereira, R.F.1
Almeida, H.A.2
Bártolo, P.J.3
-
57
-
-
0032941232
-
Alginate hydrogels as synthetic extracellular matrix materials
-
COI: 1:CAS:528:DyaK1MXjtlWnug%3D%3D, PID: 9916770
-
Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53, 1999.
-
(1999)
Biomaterials
, vol.20
, pp. 45-53
-
-
Rowley, J.A.1
Madlambayan, G.2
Mooney, D.J.3
-
58
-
-
84923829773
-
A multimaterial bioink method for 3D printing tunable, Cell-compatible hydrogels
-
COI: 1:CAS:528:DC%2BC2MXptFCksA%3D%3D, PID: 25641220
-
Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, Cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.
-
(2015)
Adv. Mater.
, vol.27
, pp. 1607-1614
-
-
Rutz, A.L.1
Hyland, K.E.2
Jakus, A.E.3
Burghardt, W.R.4
Shah, R.N.5
-
59
-
-
84925745420
-
Biomaterials for Integration with 3-D Bioprinting
-
PID: 25476164
-
Skardal, A., and A. Atala. Biomaterials for Integration with 3-D Bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.
-
(2015)
Ann. Biomed. Eng.
, vol.43
, pp. 730-746
-
-
Skardal, A.1
Atala, A.2
-
60
-
-
70249091482
-
Hydrogels in regenerative medicine
-
COI: 1:CAS:528:DC%2BD1MXhtVOrsb7L, PID: 20882499
-
Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21:3307–3329, 2009.
-
(2009)
Adv. Mater.
, vol.21
, pp. 3307-3329
-
-
Slaughter, B.V.1
Khurshid, S.S.2
Fisher, O.Z.3
Khademhosseini, A.4
Peppas, N.A.5
-
61
-
-
84948663175
-
Bioprinting of 3D hydrogels
-
COI: 1:CAS:528:DC%2BC2MXhtVSgsLjO, PID: 26066320
-
Stanton, M., J. Samitier, and S. Sánchez. Bioprinting of 3D hydrogels. Lab Chip 15:3111–3115, 2015.
-
(2015)
Lab Chip
, vol.15
, pp. 3111-3115
-
-
Stanton, M.1
Samitier, J.2
Sánchez, S.3
-
62
-
-
84874060439
-
Double-network strategy improves fracture properties of chondroitin sulfate networks
-
COI: 1:CAS:528:DC%2BC3sXhtFWmtbw%3D
-
Suekama, T. C., J. Hu, T. Kurokawa, J. P. Gong, and S. H. Gehrke. Double-network strategy improves fracture properties of chondroitin sulfate networks. ACS Macro Lett. 2:137–140, 2013.
-
(2013)
ACS Macro Lett.
, vol.2
, pp. 137-140
-
-
Suekama, T.C.1
Hu, J.2
Kurokawa, T.3
Gong, J.P.4
Gehrke, S.H.5
-
63
-
-
84959205578
-
Photocrosslinkable and elastomeric hydrogels for bone regeneration
-
COI: 1:CAS:528:DC%2BC28Xhtl2ksg%3D%3D, PID: 26650507
-
Thakur, T., J. R. Xavier, L. Cross, M. K. Jaiswal, E. Mondragon, R. Kaunas, and A. K. Gaharwar. Photocrosslinkable and elastomeric hydrogels for bone regeneration. J Biomed Mater Res A 104:879–888, 2016.
-
(2016)
J Biomed Mater Res A
, vol.104
, pp. 879-888
-
-
Thakur, T.1
Xavier, J.R.2
Cross, L.3
Jaiswal, M.K.4
Mondragon, E.5
Kaunas, R.6
Gaharwar, A.K.7
-
64
-
-
84891835083
-
25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide
-
COI: 1:CAS:528:DC%2BC3sXhslygsLrN, PID: 24227691
-
Thiele, J., Y. Ma, S. Bruekers, S. Ma, and W. T. Huck. 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26:125–148, 2014.
-
(2014)
Adv. Mater.
, vol.26
, pp. 125-148
-
-
Thiele, J.1
Ma, Y.2
Bruekers, S.3
Ma, S.4
Huck, W.T.5
-
65
-
-
67650169752
-
Hydrogels as extracellular matrix mimics for 3D cell culture
-
COI: 1:CAS:528:DC%2BD1MXnslejtb8%3D, PID: 19472329
-
Tibbitt, M. W., and K. S. Anseth. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103:655–663, 2009.
-
(2009)
Biotechnol. Bioeng.
, vol.103
, pp. 655-663
-
-
Tibbitt, M.W.1
Anseth, K.S.2
-
66
-
-
84925651941
-
Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach
-
COI: 1:CAS:528:DC%2BC2MXislSgsLk%3D, PID: 25674809
-
Xavier, J. R., T. Thakur, P. Desai, M. K. Jaiswal, N. Sears, E. Cosgriff-Hernandez, R. Kaunas, and A. K. Gaharwar. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118, 2015.
-
(2015)
ACS Nano
, vol.9
, pp. 3109-3118
-
-
Xavier, J.R.1
Thakur, T.2
Desai, P.3
Jaiswal, M.K.4
Sears, N.5
Cosgriff-Hernandez, E.6
Kaunas, R.7
Gaharwar, A.K.8
-
67
-
-
84930886019
-
Application of 3D biomimetic models in drug delivery and regenerative medicine
-
COI: 1:CAS:528:DC%2BC2MXjslyhsr4%3D, PID: 25594404
-
Xu, Y., and X. Wang. Application of 3D biomimetic models in drug delivery and regenerative medicine. Curr. Pharm. Des. 21:1618–1626, 2015.
-
(2015)
Curr. Pharm. Des.
, vol.21
, pp. 1618-1626
-
-
Xu, Y.1
Wang, X.2
-
68
-
-
84938136982
-
Supramolecular polymers: historical development, preparation, characterization, and functions
-
COI: 1:CAS:528:DC%2BC2MXktlCjsb0%3D, PID: 25768045
-
Yang, L., X. Tan, Z. Wang, and X. Zhang. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115:7196–7239, 2015.
-
(2015)
Chem. Rev.
, vol.115
, pp. 7196-7239
-
-
Yang, L.1
Tan, X.2
Wang, Z.3
Zhang, X.4
-
69
-
-
84962210462
-
3D printing of functional biomaterials for tissue engineering
-
COI: 1:CAS:528:DC%2BC28XltFKhu7c%3D, PID: 27043763
-
Zhu, W., X. Ma, M. Gou, D. Mei, K. Zhang, and S. Chen. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40:103–112, 2016.
-
(2016)
Curr. Opin. Biotechnol.
, vol.40
, pp. 103-112
-
-
Zhu, W.1
Ma, X.2
Gou, M.3
Mei, D.4
Zhang, K.5
Chen, S.6
|