ANGIOGENESIS;
ANTINEOPLASTIC ACTIVITY;
ARTICLE;
CANCER CHEMOTHERAPY;
CARBON NUCLEAR MAGNETIC RESONANCE;
CELL PROLIFERATION;
CELL VIABILITY;
CLINICAL EFFECTIVENESS;
DOWN REGULATION;
DRUG MECHANISM;
DRUG REPOSITIONING;
DRUG SCREENING;
DRUG STRUCTURE;
DRUG SYNTHESIS;
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY;
HUMAN;
HUMAN CELL;
IN VITRO STUDY;
MALIGNANT NEOPLASTIC DISEASE;
PROTON NUCLEAR MAGNETIC RESONANCE;
SIGNAL TRANSDUCTION;
STEREOCHEMISTRY;
STEREOISOMERISM;
STRUCTURE ACTIVITY RELATION;
ANIMAL;
C3H MOUSE;
CELL LINE;
GENETICS;
IC50;
MOUSE;
Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth
Kim, J.; Tang, J. Y.; Gong, R.; Kim, J.; Lee, J. J.; Clemons, K. V.; Chong, C. R.; Chang, K. S.; Fereshteh, M.; Gardner, D.; Reya, T.; Liu, J. O.; Epstein, E. H.; Stevens, D. A.; Beachy, P. A. Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth Cancer Cell 2010, 17, 388-399 10.1016/j.ccr.2010.02.027
Inhibition of Angiogenesis by the Antifungal Drug Itraconazole
Chong, C. R.; Xu, J.; Lu, J.; Bhat, S.; Sullivan, D. J., Jr.; Liu, J. O. Inhibition of Angiogenesis by the Antifungal Drug Itraconazole ACS Chem. Biol. 2007, 2, 263-270 10.1021/cb600362d
The mechanisms of hedgehog signaling and its roles in development and disease
Briscoe, J.; Thérond, P. P. The mechanisms of hedgehog signaling and its roles in development and disease Nat. Rev. Mol. Cell Biol. 2013, 14, 418-431 10.1038/nrm3598
Unraveling the therapeutic potential of the hedgehog pathway in cancer
Amakye, D.; Jagani, Z.; Dorsch, M. Unraveling the therapeutic potential of the hedgehog pathway in cancer Nat. Med. 2013, 19, 1410-1422 10.1038/nm.3389
Subtypes of medulloblastoma have distinct developmental origins
Gibson, P.; Tong, Y.; Robinson, G.; Thompson, M. C.; Currle, D. S.; Eden, C.; Kranenburg, T. A.; Hogg, T.; Poppleton, H.; Martin, J.; Finkelstein, D.; Pounds, S.; Weiss, A.; Patay, Z.; Scoggins, M.; Ogg, R.; Pei, Y.; Yang, Z. J.; Brun, S.; Lee, Y.; Zindy, F.; Lindsey, J. C.; Taketo, M. M.; Boop, F. A.; Sanford, R. A.; Gajjar, A.; Clifford, S. C.; Roussel, M. F.; McKinnon, P. J.; Gutmann, D. H.; Ellison, D. W.; Wechsler-Reya, R.; Gilbertson, R. J. Subtypes of medulloblastoma have distinct developmental origins Nature 2010, 468, 1095-1099 10.1038/nature09587
Recent advances in the design of Hedgehog pathway inhibitors for the treatment of malignancies
Banerjee, U.; Hadden, M. K. Recent advances in the design of Hedgehog pathway inhibitors for the treatment of malignancies Expert Opin. Drug Discovery 2014, 9 (7) 751-771 10.1517/17460441.2014.920817
Regulation of the oncoprotein smoothened by small molecules
Sharpe, H. J.; Wang, W.; Hannoush, R. N.; de Sauvage, F. J. Regulation of the oncoprotein smoothened by small molecules Nat. Chem. Biol. 2015, 11, 246-255 10.1038/nchembio.1776
Anti-angiogenesis therapy in cancer: Current challenges and future perspectives
Shojaei, F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives Cancer Lett. 2012, 320, 130-137 10.1016/j.canlet.2012.03.008
Angiogenesis and Antiangiogenesis Therapies: Spear and Shield of Pharmacotherapy
Feng, X. Angiogenesis and Antiangiogenesis Therapies: Spear and Shield of Pharmacotherapy J. Pharma Care Health Sys. 2014, 1 (3) e110 10.4172/jpchs.1000e110
Nano-amorphous spray dried powder to improve oral bioavailability of itraconazole
Kumar, S.; Shen, J.; Burgess, D. J. Nano-amorphous spray dried powder to improve oral bioavailability of itraconazole J. Controlled Release 2014, 192, 95-102 10.1016/j.jconrel.2014.06.059
Role of itraconazole metabolites in CYP3A4 inhibition
Isoherranen, N.; Kunze, K. L.; Allen, K. E.; Nelson, W. L.; Thummel, K. E. Role of itraconazole metabolites in CYP3A4 inhibition Drug Metab. Dispos. 2004, 32, 1121-1131 10.1124/dmd.104.000315
A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interactions with azole antifungals
Ji, H.; Zhang, W.; Zhou, Y.; Zhang, M.; Zhu, J.; Song, Y.; Lü, J.; Zhu, J. A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interactions with azole antifungals J. Med. Chem. 2000, 43, 2493-2505 10.1021/jm990589g
Separation and quantitation of the four stereoisomers of itraconazole in pharmaceutical formulations by electrokinetic chromatography
Castro-Puyana, M.; Crego, A. L.; Marina, M. L. Separation and quantitation of the four stereoisomers of itraconazole in pharmaceutical formulations by electrokinetic chromatography Electrophoresis 2006, 27, 887-895 10.1002/elps.200500347
Itraconazole side chain analogues: Structure-activity relationship studies for inhibition of endothelial cell proliferation, vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and hedgehog signaling
Shi, W.; Nacev, B. A.; Aftab, B. T.; Head, S.; Rudin, C. M.; Liu, J. O. Itraconazole side chain analogues: Structure-activity relationship studies for inhibition of endothelial cell proliferation, vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and hedgehog signaling J. Med. Chem. 2011, 54, 7363-7374 10.1021/jm200944b
Impact of Absolute Stereochemistry on the Antiangiogenic and Antifungal Activities of Itraconazole
Shi, W.; Nacev, B. A.; Bhat, S.; Liu, J. O. Impact of Absolute Stereochemistry on the Antiangiogenic and Antifungal Activities of Itraconazole ACS Med. Chem. Lett. 2010, 1 (4) 155-159 10.1021/ml1000068
Antimycotic Azoles. 7. Synthesis and Antifungal Properties of a Series of Novel Triazol-3-ones
Heeres, J.; Backx, L. J. J.; Van Cutsem, J. Antimycotic Azoles. 7. Synthesis and Antifungal Properties of a Series of Novel Triazol-3-ones J. Med. Chem. 1984, 27, 894-900 10.1021/jm00373a015
Synthesis, antifungal activity and structure-activity relationships of 2-(alkyl or aryl)-2-(alkyl or polyazol-1-ylmethyl)-4-(polyazol-1-ylmethyl)-1,3-dioxolanes
Baji, H.; Kimny, T.; Gasquez, F.; Flammang, M.; Compagnon, P. L.; Delcourt, A.; Mathieu, G.; Viossat, B.; Morgant, G.; Nguyen-Huy, D. Synthesis, antifungal activity and structure-activity relationships of 2-(alkyl or aryl)-2-(alkyl or polyazol-1-ylmethyl)-4-(polyazol-1-ylmethyl)-1,3-dioxolanes Eur. J. Med. Chem. 1997, 32, 637 10.1016/S0223-5234(97)83290-4
Evaluation of vitamin D3 A-ring analogues as hedgehog pathway inhibitors
Banerjee, U.; Ghosh, M.; Hadden, M. K. Evaluation of vitamin D3 A-ring analogues as hedgehog pathway inhibitors Bioorg. Med. Chem. Lett. 2012, 22, 1330-1334 10.1016/j.bmcl.2011.12.081
Long-term establishment, characterization and manipulation of cell lines from mouse basal cell carcinoma tumors
So, P.-L.; Langston, A. W.; Daniallinia, N.; Hebert, J. L.; Fujimoto, M. A.; Khaimskiy, Y.; Aszterbaum, M.; Epstein, E. H. Long-term establishment, characterization and manipulation of cell lines from mouse basal cell carcinoma tumors Exp. Dermatol. 2006, 15, 742-750 10.1111/j.1600-0625.2006.00465.x
Vitamin D3 inhibits hedgehog signaling and proliferation in murine basal cell carcinomas
Tang, J. Y.; Xiao, T. Z.; Oda, Y.; Chang, K. S.; Shpall, E.; Wu, A.; So, P.-L.; Hebert, J.; Bikle, D.; Epstein, E. H. Vitamin D3 inhibits hedgehog signaling and proliferation in murine basal cell carcinomas Cancer Prev. Res. 2011, 4, 744-751 10.1158/1940-6207.CAPR-10-0285
Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells
Yang, Z.-J.; Ellis, T.; Markant, S. L.; Read, T.-A.; Kessler, J. D.; Bourboulas, M.; Schüller, U.; Machold, R.; Fishell, G.; Rowitch, D. H.; Wainwright, B. J.; Wechsler-Reya, R. J. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells Cancer Cell 2008, 14, 135-145 10.1016/j.ccr.2008.07.003
Targeting sonic hedgehog-associated medulloblastoma through inhibition of Aurora and Polo-like kinases
Markant, S. L.; Esparza, L. A.; Sun, J.; Barton, K. L.; McCoig, L. M.; Grant, G. A.; Crawford, J. R.; Levy, M. L.; Northcott, P. A.; Shih, D.; Remke, M.; Taylor, M. D.; Wechsler-Reya, R. J. Targeting sonic hedgehog-associated medulloblastoma through inhibition of Aurora and Polo-like kinases Cancer Res. 2013, 73, 6310-6322 10.1158/0008-5472.CAN-12-4258
Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma
Brun, S. N.; Markant, S. L.; Esparza, L. A.; Garcia, G.; Terry, D.; Huang, J.-M.; Pavlyukov, M. S.; Li, X.-N.; Grant, G. A.; Crawford, J. R.; Levy, M. L.; Conway, E. M.; Smith, L. H.; Nakano, I.; Berezov, A.; Greene, M. I.; Wang, Q.; Wechsler-Reya, R. J. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma Oncogene 2015, 34, 3770-3779 10.1038/onc.2014.304
Total synthesis of (2R,4S,2′S,3′R)-hydroxyitraconazole: Implementations of a recycle protocol and a mild and safe phase-transfer reagent for preparation of the key chiral units
Tanoury, G. J.; Hett, R.; Wilkinson, H. S.; Wald, S. A.; Senanayake, C. H. Total synthesis of (2R,4S,2′S,3′R)-hydroxyitraconazole: implementations of a recycle protocol and a mild and safe phase-transfer reagent for preparation of the key chiral units Tetrahedron: Asymmetry 2003, 14, 3487-3493 10.1016/j.tetasy.2003.01.001
Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma
Yauch, R. L.; Dijkgraaf, G. J.; Alicke, B.; Januario, T.; Ahn, C. P.; Holcomb, T.; Pujara, K.; Stinson, J.; Callahan, C. A.; Tang, T.; Bazan, J. F.; Kan, Z.; Seshagiri, S.; Hann, C. L.; Gould, S. E.; Low, J. A.; Rudin, C. M.; de Sauvage, F. J. Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma Science 2009, 326, 572-574 10.1126/science.1179386
Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance
Dijkgraaf, G. J. P.; Alicke, B.; Weinmann, L.; Januario, T.; West, K.; Modrusan, Z.; Burdick, D.; Goldsmith, R.; Robarge, K.; Sutherlin, D.; Scales, S. J.; Gould, S. E.; Yauch, R. L.; de Sauvage, F. J. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance Cancer Res. 2011, 71, 435-444 10.1158/0008-5472.CAN-10-2876
Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma
Sharpe, H. J.; Pau, G.; Dijkgraaf, G. J.; Basset-Seguin, N.; Modrusan, Z.; Januario, T.; Tsui, V.; Durham, A. B.; Dlugosz, A. A.; Haverty, P. M.; Bourgon, R.; Tang, J. Y.; Sarin, K. Y.; Dirix, L.; Fisher, D. C.; Rudin, C. M.; Sofen, H.; Migden, M. R.; Yauch, R. L.; de Sauvage, F. J. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma Cancer Cell 2015, 27, 327-341 10.1016/j.ccell.2015.02.001
Smoothened variants explain the majority of drug resistance in basal cell carcinoma
Atwood, S. X.; Sarin, K. Y.; Whitson, R. J.; Li, J. R.; Kim, G.; Rezaee, M.; Ally, M. S.; Kim, J.; Yao, C.; Chang, A. L. S.; Oro, A. E.; Tang, J. Y. Smoothened variants explain the majority of drug resistance in basal cell carcinoma Cancer Cell 2015, 27, 342-353 10.1016/j.ccell.2015.02.002
Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists
Kim, J.; Aftab, B. T.; Tang, J. Y.; Kim, D.; Lee, A. H.; Rezaee, M.; Kim, J.; Chen, B.; King, E. M.; Borodovsky, A.; Riggins, G. J.; Epstein, E. H.; Beachy, P. A.; Rudin, C. M. Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists Cancer Cell 2013, 23, 23-34 10.1016/j.ccr.2012.11.017
Small molecule synthetic inhibitors of Hh signaling as anti-cancer chemotherapeutics
Maschinot, C. A.; Pace, J. R.; Hadden, M. K. Small molecule synthetic inhibitors of Hh signaling as anti-cancer chemotherapeutics Curr. Med. Chem. 2015, 22, 4033 10.2174/0929867322666150827093904