-
1
-
-
79251577061
-
The regulation of autophagy - unanswered questions
-
21187343
-
Y.Chen, D.J.Klionsky. The regulation of autophagy - unanswered questions. J Cell Sci 2011; 124:161-70; PMID:21187343; http://dx.doi.org/10.1242/jcs.064576
-
(2011)
J Cell Sci
, vol.124
, pp. 161-170
-
-
Chen, Y.1
Klionsky, D.J.2
-
2
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
18305538
-
N.Mizushima, B.Levine, A.M.Cuervo, D.J.Klionsky. Autophagy fights disease through cellular self-digestion. Nature 2008; 451:1069-75; PMID:18305538; http://dx.doi.org/10.1038/nature06639
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
3
-
-
84873660610
-
Autophagy in human health and disease
-
23406030
-
A.M.Choi, S.W.Ryter, B.Levine. Autophagy in human health and disease. N Engl J Med 2013; 368:651-62; PMID:23406030; http://dx.doi.org/10.1056/NEJMra1205406
-
(2013)
N Engl J Med
, vol.368
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
4
-
-
84901833411
-
Autophagy and human disease: emerging themes
-
24907664
-
J.L.Schneider, A.M.Cuervo. Autophagy and human disease: emerging themes. Curr Opin Genet Dev 2014; 26:16-23; PMID:24907664; http://dx.doi.org/10.1016/j.gde.2014.04.003
-
(2014)
Curr Opin Genet Dev
, vol.26
, pp. 16-23
-
-
Schneider, J.L.1
Cuervo, A.M.2
-
5
-
-
84866102382
-
Autophagy across the eukaryotes: is S. cerevisiae the odd one out?
-
22722653
-
J.S.King. Autophagy across the eukaryotes: is S. cerevisiae the odd one out? Autophagy 2012; 8:1159-62; PMID:22722653; http://dx.doi.org/10.4161/auto.20527
-
(2012)
Autophagy
, vol.8
, pp. 1159-1162
-
-
King, J.S.1
-
6
-
-
84873675067
-
The ULK1 complex: sensing nutrient signals for autophagy activation
-
23295650
-
P.M.Wong, C.Puente, I.G.Ganley, X.Jiang. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013; 9:124-37; PMID:23295650; http://dx.doi.org/10.4161/auto.23323
-
(2013)
Autophagy
, vol.9
, pp. 124-137
-
-
Wong, P.M.1
Puente, C.2
Ganley, I.G.3
Jiang, X.4
-
7
-
-
68149139456
-
The autophagy effector Beclin 1: a novel BH3-only protein
-
19641499
-
S.Sinha, B.Levine. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 2008; 27:S137-48; PMID:19641499; http://dx.doi.org/10.1038/onc.2009.51
-
(2008)
Oncogene
, vol.27
, pp. 137-148
-
-
Sinha, S.1
Levine, B.2
-
8
-
-
78751655392
-
Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis
-
21182587
-
F.Zhou, Y.Yang, D.Xing. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 2011; 278:403-13; PMID:21182587; http://dx.doi.org/10.1111/j.1742-4658.2010.07965.x
-
(2011)
FEBS J
, vol.278
, pp. 403-413
-
-
Zhou, F.1
Yang, Y.2
Xing, D.3
-
9
-
-
84925285025
-
EGFR inhibitors and autophagy in cancer treatment
-
25293518
-
J.Cui, Y.F.Hu, X.M.Feng, T.Tian, Y.H.Guo, J.W.Ma, K.J.Nan, H.Y.Zhang. EGFR inhibitors and autophagy in cancer treatment. Tumour Biol 2014; 35:11701-9; PMID:25293518; http://dx.doi.org/10.1007/s13277-014-2660-z
-
(2014)
Tumour Biol
, vol.35
, pp. 11701-11709
-
-
Cui, J.1
Hu, Y.F.2
Feng, X.M.3
Tian, T.4
Guo, Y.H.5
Ma, J.W.6
Nan, K.J.7
Zhang, H.Y.8
-
10
-
-
84892589371
-
EGFR signaling and autophagy dependence for growth, survival, and therapy resistance
-
24335351
-
B.Jutten, K.M.Rouschop. EGFR signaling and autophagy dependence for growth, survival, and therapy resistance. Cell Cycle 2014; 13:42-51; PMID:24335351; http://dx.doi.org/10.4161/cc.27518
-
(2014)
Cell Cycle
, vol.13
, pp. 42-51
-
-
Jutten, B.1
Rouschop, K.M.2
-
11
-
-
84929459012
-
Cotargeting EGFR and autophagy signaling: A novel therapeutic strategy for non-small-cell lung cancer
-
24649300
-
X.Sui, N.Kong, M.Zhu, X.Wang, F.Lou, W.Han, H.Pan. Cotargeting EGFR and autophagy signaling: A novel therapeutic strategy for non-small-cell lung cancer. Mol Clin Oncol 2014; 2:8-12; PMID:24649300
-
(2014)
Mol Clin Oncol
, vol.2
, pp. 8-12
-
-
Sui, X.1
Kong, N.2
Zhu, M.3
Wang, X.4
Lou, F.5
Han, W.6
Pan, H.7
-
12
-
-
84884262668
-
EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
-
24034250
-
Y.Wei, Z.Zou, N.Becker, M.Anderson, R.Sumpter, G.Xiao, L.Kinch, P.Koduru, C.S.Christudass, R.W.Veltri, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013; 154:1269-84; PMID:24034250; http://dx.doi.org/10.1016/j.cell.2013.08.015
-
(2013)
Cell
, vol.154
, pp. 1269-1284
-
-
Wei, Y.1
Zou, Z.2
Becker, N.3
Anderson, M.4
Sumpter, R.5
Xiao, G.6
Kinch, L.7
Koduru, P.8
Christudass, C.S.9
Veltri, R.W.10
-
13
-
-
84887023636
-
EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival
-
23891088
-
B.1.Jutten, T.G.Keulers, M.B.Schaaf, K.Savelkouls, J.Theys, P.N.Span, M.A.Vooijs, J.Bussink, K.M.Rouschop. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. Radiother Oncol 2013; 108:479-83; PMID:23891088; http://dx.doi.org/10.1016/j.radonc.2013.06.033
-
(2013)
Radiother Oncol
, vol.108
, pp. 479-483
-
-
Jutten, B.1
Keulers, T.G.2
Schaaf, M.B.3
Savelkouls, K.4
Theys, J.5
Span, P.N.6
Vooijs, M.A.7
Bussink, J.8
Rouschop, K.M.9
-
14
-
-
84870701628
-
EGFR tyrosine kinase inhibition induces autophagy in cancer cells
-
22954701
-
C.Fung, X.Chen, J.R.Grandis, U.Duvvuri. EGFR tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol Ther 2012; 13:1417-24; PMID:22954701; http://dx.doi.org/10.4161/cbt.22002
-
(2012)
Cancer Biol Ther
, vol.13
, pp. 1417-1424
-
-
Fung, C.1
Chen, X.2
Grandis, J.R.3
Duvvuri, U.4
-
15
-
-
0036362181
-
Why the epidermal growth factor receptor? The rationale for cancer therapy
-
12202782
-
J.Baselga. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 2002; 7:2-8; PMID:12202782; http://dx.doi.org/10.1634/theoncologist.7-suppl_4-2
-
(2002)
Oncologist
, vol.7
, pp. 2-8
-
-
Baselga, J.1
-
17
-
-
25444440875
-
The role of autophagy in cancer development and response to therapy
-
16148885
-
Y.1.Kondo, T.Kanzawa, R.Sawaya, S.Kondo. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5:726-34; PMID:16148885; http://dx.doi.org/10.1038/nrc1692
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 726-734
-
-
Kondo, Y.1
Kanzawa, T.2
Sawaya, R.3
Kondo, S.4
-
18
-
-
84899502960
-
Autophagy and cancer therapy
-
24574520
-
A.Thorburn, D.H.Thamm, D.L.Gustafson. Autophagy and cancer therapy. Mol Pharmacol 2014; 85:830-8; PMID:24574520; http://dx.doi.org/10.1124/mol.114.091850
-
(2014)
Mol Pharmacol
, vol.85
, pp. 830-838
-
-
Thorburn, A.1
Thamm, D.H.2
Gustafson, D.L.3
-
19
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
22534666
-
E.White. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12:401-10; PMID:22534666; http://dx.doi.org/10.1038/nrc3262
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 401-410
-
-
White, E.1
-
20
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
25278333
-
C.M.Kenific, J.Debnath. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 2015; 25:37-45; PMID:25278333; http://dx.doi.org/10.1016/j.tcb.2014.09.001
-
(2015)
Trends Cell Biol
, vol.25
, pp. 37-45
-
-
Kenific, C.M.1
Debnath, J.2
-
21
-
-
0023910405
-
Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity
-
C.N.Coleman. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Natl Cancer Inst 1998; 80:310-7; http://dx.doi.org/10.1093/jnci/80.5.310
-
(1998)
J Natl Cancer Inst
, vol.80
, pp. 310-317
-
-
Coleman, C.N.1
-
22
-
-
0024408986
-
Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review
-
2684393
-
P.1.Vaupel, F.Kallinowski, P.Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49:6449-65; PMID:2684393
-
(1989)
Cancer Res
, vol.49
, pp. 6449-6465
-
-
Vaupel, P.1
Kallinowski, F.2
Okunieff, P.3
-
24
-
-
33746491709
-
Drug penetration in solid tumours
-
16862189
-
A.I.1.Minchinton, I.F.Tannock. Drug penetration in solid tumours. Nat Rev Cancer 2006; 6:583-92; PMID:16862189; http://dx.doi.org/10.1038/nrc1893
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 583-592
-
-
Minchinton, A.I.1
Tannock, I.F.2
-
25
-
-
33646503038
-
Tumor hypoxia and cancer progression
-
16002209
-
J.1.Zhou, T.Schmid, S.Schnitzer, B.Brüne. Tumor hypoxia and cancer progression. Cancer Lett 2006; 237:10-21; PMID:16002209; http://dx.doi.org/10.1016/j.canlet.2005.05.028
-
(2006)
Cancer Lett
, vol.237
, pp. 10-21
-
-
Zhou, J.1
Schmid, T.2
Schnitzer, S.3
Brüne, B.4
-
26
-
-
84908152108
-
Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives
-
25285017
-
X.Cheng, H.Chen. Tumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives. Onco Targets Ther 2014; 7:1689-704; PMID:25285017; http://dx.doi.org/10.2147/OTT.S66502
-
(2014)
Onco Targets Ther
, vol.7
, pp. 1689-1704
-
-
Cheng, X.1
Chen, H.2
-
27
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
19273585
-
G.Bellot, R.Garcia-Medina, P.Gounon, J.Chiche, D.Roux, J.Pouysségur, N.M.Mazure. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009; 29:2570-81; PMID:19273585; http://dx.doi.org/10.1128/MCB.00166-09
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
Pouysségur, J.6
Mazure, N.M.7
-
28
-
-
56349126024
-
Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury
-
18760364
-
S.Carloni, G.Buonocore, W.Balduini. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008; 32:329-39; PMID:18760364; http://dx.doi.org/10.1016/j.nbd.2008.07.022
-
(2008)
Neurobiol Dis
, vol.32
, pp. 329-339
-
-
Carloni, S.1
Buonocore, G.2
Balduini, W.3
-
29
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
18281291
-
H.Zhang, M.Bosch-Marce, L.A.Shimoda, Y.S.Tan, J.H.Baek, J.B.Wesley, F.J.Gonzalez, G.L.Semenza. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283:10892-903; PMID:18281291; http://dx.doi.org/10.1074/jbc.M800102200
-
(2008)
J Biol Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
Gonzalez, F.J.7
Semenza, G.L.8
-
30
-
-
73449102143
-
Hypoxia-induced autophagy contributes to the chemoresistance of hepatocellular carcinoma cells
-
19786832
-
J.Song, Z.Qu, X.Guo, Q.Zhao, X.Zhao, L.Gao, K.Sun, F.Shen, M.Wu, L.Wei. Hypoxia-induced autophagy contributes to the chemoresistance of hepatocellular carcinoma cells. Autophagy 2009; 5:1131-44; PMID:19786832; http://dx.doi.org/10.4161/auto.5.8.9996
-
(2009)
Autophagy
, vol.5
, pp. 1131-1144
-
-
Song, J.1
Qu, Z.2
Guo, X.3
Zhao, Q.4
Zhao, X.5
Gao, L.6
Sun, K.7
Shen, F.8
Wu, M.9
Wei, L.10
-
31
-
-
84879400218
-
Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role ofautophagy and JNK activation
-
23681233
-
A.Notte, N.Ninane, T.Arnould, C.Michiels. Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role ofautophagy and JNK activation. Cell Death Dis 2013; 4:e638; PMID:23681233; http://dx.doi.org/10.1038/cddis.2013.167
-
(2013)
Cell Death Dis
, vol.4
, pp. 638
-
-
Notte, A.1
Ninane, N.2
Arnould, T.3
Michiels, C.4
-
32
-
-
38949119423
-
Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3
-
18059169
-
M.B.Azad, Y.Chen, E.S.Henson, J.Cizeau, E.McMillan-Ward, S.J.Israels, S.B.Gibson. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 2008; 4:195-204; PMID:18059169; http://dx.doi.org/10.4161/auto.5278
-
(2008)
Autophagy
, vol.4
, pp. 195-204
-
-
Azad, M.B.1
Chen, Y.2
Henson, E.S.3
Cizeau, J.4
McMillan-Ward, E.5
Israels, S.J.6
Gibson, S.B.7
-
33
-
-
78349285544
-
Role of BNIP3 in proliferation and hypoxia-induced autophagy: implications for personalized cancer therapies
-
20973794
-
M.B.Azad, S.B.Gibson. Role of BNIP3 in proliferation and hypoxia-induced autophagy: implications for personalized cancer therapies. Ann N Y Acad Sci 2010; 1210:8-16; PMID:20973794; http://dx.doi.org/10.1111/j.1749-6632.2010.05778.x
-
(2010)
Ann N Y Acad Sci
, vol.1210
, pp. 8-16
-
-
Azad, M.B.1
Gibson, S.B.2
-
34
-
-
33746637534
-
Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy
-
16877357
-
F.Adhami, G.Liao, Y.M.Morozov, A.Schloemer, V.J.Schmithorst, J.N.Lorenz, R.S.Dunn, C.V.Vorhees, M.Wills-Karp, J.L.Degen, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006; 169:566-83; PMID:16877357; http://dx.doi.org/10.2353/ajpath.2006.051066
-
(2006)
Am J Pathol
, vol.169
, pp. 566-583
-
-
Adhami, F.1
Liao, G.2
Morozov, Y.M.3
Schloemer, A.4
Schmithorst, V.J.5
Lorenz, J.N.6
Dunn, R.S.7
Vorhees, C.V.8
Wills-Karp, M.9
Degen, J.L.10
-
35
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
17576813
-
K.Tracy, B.C.Dibling, B.T.Spike, J.R.Knabb, P.Schumacker, K.F.Macleod. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27:6229-42; PMID:17576813; http://dx.doi.org/10.1128/MCB.02246-06
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
36
-
-
39549093998
-
Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury
-
18187572
-
M.Koike, M.Shibata, M.Tadakoshi, K.Gotoh, M.Komatsu, S.Waguri, N.Kawahara, K.Kuida, S.Nagata, E.Kominami, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008; 172:454-69; PMID:18187572; http://dx.doi.org/10.2353/ajpath.2008.070876
-
(2008)
Am J Pathol
, vol.172
, pp. 454-469
-
-
Koike, M.1
Shibata, M.2
Tadakoshi, M.3
Gotoh, K.4
Komatsu, M.5
Waguri, S.6
Kawahara, N.7
Kuida, K.8
Nagata, S.9
Kominami, E.10
-
37
-
-
43949114864
-
Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion
-
18227645
-
Y.Matsui, S.Kyoi, H.Takagi, C.P.Hsu, N.Hariharan, T.Ago, S.F.Vatner, J.Sadoshima. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 2008; 4:409-15; PMID:18227645; http://dx.doi.org/10.4161/auto.5638
-
(2008)
Autophagy
, vol.4
, pp. 409-415
-
-
Matsui, Y.1
Kyoi, S.2
Takagi, H.3
Hsu, C.P.4
Hariharan, N.5
Ago, T.6
Vatner, S.F.7
Sadoshima, J.8
-
38
-
-
52149101812
-
Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
-
18551130
-
I.Papandreou, A.L.Lim, K.Laderoute, N.C.Denko. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 2008; 15:1572-81; PMID:18551130; http://dx.doi.org/10.1038/cdd.2008.84
-
(2008)
Cell Death Differ
, vol.15
, pp. 1572-1581
-
-
Papandreou, I.1
Lim, A.L.2
Laderoute, K.3
Denko, N.C.4
-
39
-
-
84890812342
-
+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia
-
24277826
-
+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 2013; 110:20364-71; PMID:24277826; http://dx.doi.org/10.1073/pnas.1319661110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 20364-20371
-
-
Liu, Y.1
Shoji-Kawata, S.2
Sumpter, R.M.3
Wei, Y.4
Ginet, V.5
Zhang, L.6
Posner, B.7
Tran, K.A.8
Green, D.R.9
Xavier, R.J.10
-
40
-
-
84922541234
-
Autosis and autophagic cell death: the dark side of autophagy
-
25257169
-
Y.Liu, B.Levine. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 2015; 22:367-76; PMID:25257169; http://dx.doi.org/10.1038/cdd.2014.143
-
(2015)
Cell Death Differ
, vol.22
, pp. 367-376
-
-
Liu, Y.1
Levine, B.2
-
41
-
-
34548803430
-
Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer
-
17670948
-
A.Franovic, L.Gunaratnam, K.Smith, I.Robert, D.Patten, S.Lee. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci U S A 2007; 104:13092-7; PMID:17670948; http://dx.doi.org/10.1073/pnas.0702387104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 13092-13097
-
-
Franovic, A.1
Gunaratnam, L.2
Smith, K.3
Robert, I.4
Patten, D.5
Lee, S.6
-
42
-
-
84859454686
-
Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1
-
22411794
-
Y.Wang, O.Roche, C.Xu, E.H.Moriyama, P.Heir, J.Chung, F.C.Roos, Y.Chen, G.Finak, M.Milosevic, et al. Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proc Natl Acad Sci U S A 2012; 109:4892-7; PMID:22411794; http://dx.doi.org/10.1073/pnas.1112129109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 4892-4897
-
-
Wang, Y.1
Roche, O.2
Xu, C.3
Moriyama, E.H.4
Heir, P.5
Chung, J.6
Roos, F.C.7
Chen, Y.8
Finak, G.9
Milosevic, M.10
-
43
-
-
84901698186
-
Interaction of caveolin-1 with ATG12-ATG5 system suppresses autophagy in lung epithelial cells
-
24727585
-
Z.H.Chen, J.F.Cao, J.S.Zhou, H.Liu, L.Q.Che, K.Mizumura, W.Li, A.M.Choi, H.H.Shen. Interaction of caveolin-1 with ATG12-ATG5 system suppresses autophagy in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1016-25; PMID:24727585; http://dx.doi.org/10.1152/ajplung.00268.2013
-
(2014)
Am J Physiol Lung Cell Mol Physiol
, vol.306
, pp. 1016-1025
-
-
Chen, Z.H.1
Cao, J.F.2
Zhou, J.S.3
Liu, H.4
Che, L.Q.5
Mizumura, K.6
Li, W.7
Choi, A.M.8
Shen, H.H.9
-
44
-
-
78650434097
-
Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema
-
20956295
-
Z.H.Chen, H.C.Lam, Y.Jin, H.P.Kim, J.Cao, S.J.Lee, E.Ifedigbo, H.Parameswaran, S.W.Ryter, A.M.Choi. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA 2010; 107:18880-5; PMID:20956295; http://dx.doi.org/10.1073/pnas.1005574107
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 18880-18885
-
-
Chen, Z.H.1
Lam, H.C.2
Jin, Y.3
Kim, H.P.4
Cao, J.5
Lee, S.J.6
Ifedigbo, E.7
Parameswaran, H.8
Ryter, S.W.9
Choi, A.M.10
-
45
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
15525940
-
A.Kuma, M.Hatano, M.Matsui, A.Yamamoto, H.Nakaya, T.Yoshimori, Y.Ohsumi, T.Tokuhisa, N.Mizushima. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032-6; PMID:15525940; http://dx.doi.org/10.1038/nature03029
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
46
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
15866887
-
M.Komatsu, S.Waguri, T.Ueno, J.Iwata, S.Murata, I.Tanida, J.Ezaki, N.Mizushima, Y.Ohsumi, Y.Uchiyama, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169:425-34; PMID:15866887; http://dx.doi.org/10.1083/jcb.200412022
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
47
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production
-
18849965
-
T.Saitoh, N.Fujita, M.H.Jang, S.Uematsu, B.G.Yang, T.Satoh, H.Omori, T.Noda, N.Yamamoto, M.Komatsu, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 2008; 456:264-8; PMID:18849965; http://dx.doi.org/10.1038/nature07383
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
Satoh, T.6
Omori, H.7
Noda, T.8
Yamamoto, N.9
Komatsu, M.10
-
48
-
-
73949083594
-
Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
-
19926846
-
T.Saitoh, N.Fujita, T.Hayashi, K.Takahara, T.Satoh, H.Lee, K.Matsunaga, S.Kageyama, H.Omori, T.Noda, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 2009; 106:20842-6; PMID:19926846; http://dx.doi.org/10.1073/pnas.0911267106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 20842-20846
-
-
Saitoh, T.1
Fujita, N.2
Hayashi, T.3
Takahara, K.4
Satoh, T.5
Lee, H.6
Matsunaga, K.7
Kageyama, S.8
Omori, H.9
Noda, T.10
-
49
-
-
57549094368
-
The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
-
18768753
-
Y.S.Sou, S.Waguri, J.Iwata, T.Ueno, T.Fujimura, T.Hara, N.Sawada, A.Yamada, N.Mizushima, Y.Uchiyama, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 2008; 19:4762–715; PMID:18768753; http://dx.doi.org/10.1091/mbc.E08-03-0309
-
(2008)
Mol Biol Cell
, vol.19
, pp. 4715-4762
-
-
Sou, Y.S.1
Waguri, S.2
Iwata, J.3
Ueno, T.4
Fujimura, T.5
Hara, T.6
Sawada, N.7
Yamada, A.8
Mizushima, N.9
Uchiyama, Y.10
-
50
-
-
0041411115
-
Autophagic programmed cell death in Drosophila
-
12934068
-
E.H.Baehrecke. Autophagic programmed cell death in Drosophila. Cell Death Differ 2003; 10:940-5; PMID:12934068; http://dx.doi.org/10.1038/sj.cdd.4401280
-
(2003)
Cell Death Differ
, vol.10
, pp. 940-945
-
-
Baehrecke, E.H.1
-
51
-
-
85047687755
-
Autophagy activity contributes to programmed cell death in Caenorhabditis elegans
-
24185352
-
H.Wang, Q.Lu, S.Cheng, X.Wang, H.Zhang. Autophagy activity contributes to programmed cell death in Caenorhabditis elegans. Autophagy 2013; 9:1975-82; PMID:24185352; http://dx.doi.org/10.4161/auto.26152
-
(2013)
Autophagy
, vol.9
, pp. 1975-1982
-
-
Wang, H.1
Lu, Q.2
Cheng, S.3
Wang, X.4
Zhang, H.5
-
52
-
-
65549157489
-
Autophagic components contribute to hypersensitive cell death in Arabidopsis
-
19450522
-
D.Hofius, T.Schultz-Larsen, J.Joensen, D.I.Tsitsigiannis, N.H.Petersen, O.Mattsson, L.B.Jörgensen, J.D.Jones, J.Mundy, M.Petersen. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009; 137:773-83; PMID:19450522; http://dx.doi.org/10.1016/j.cell.2009.02.036
-
(2009)
Cell
, vol.137
, pp. 773-783
-
-
Hofius, D.1
Schultz-Larsen, T.2
Joensen, J.3
Tsitsigiannis, D.I.4
Petersen, N.H.5
Mattsson, O.6
Jörgensen, L.B.7
Jones, J.D.8
Mundy, J.9
Petersen, M.10
-
53
-
-
69549128237
-
Autophagic cell death: analysis in Dictyostelium
-
19133302
-
C.Giusti, E.Tresse, M.F.Luciani, P.Golstein. Autophagic cell death: analysis in Dictyostelium. Biochim Biophys Acta 2009; 1793:1422-31; PMID:19133302; http://dx.doi.org/10.1016/j.bbamcr.2008.12.005
-
(2009)
Biochim Biophys Acta
, vol.1793
, pp. 1422-1431
-
-
Giusti, C.1
Tresse, E.2
Luciani, M.F.3
Golstein, P.4
-
54
-
-
85047697868
-
ARL1 mutation affected autophagic cell death in yeast, causing a defect in central vacuole formation
-
11840166
-
A.Abudugupur, K.Mitsui, S.Yokota, K.Tsurugi. ARL1 mutation affected autophagic cell death in yeast, causing a defect in central vacuole formation. Cell Death Differ 2002; 9:158-68; PMID:11840166; http://dx.doi.org/10.1038/sj.cdd.4400942
-
(2002)
Cell Death Differ
, vol.9
, pp. 158-168
-
-
Abudugupur, A.1
Mitsui, K.2
Yokota, S.3
Tsurugi, K.4
-
55
-
-
84869752511
-
Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT)
-
23185433
-
A.Misra, C.Pandey, S.K.Sze, T.Thanabalu. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT). PLoS One 2012; 7:e49766; PMID:23185433; http://dx.doi.org/10.1371/journal.pone.0049766
-
(2012)
PLoS One
, vol.7
, pp. 49766
-
-
Misra, A.1
Pandey, C.2
Sze, S.K.3
Thanabalu, T.4
-
56
-
-
84867723524
-
Autophagy as a target for cancer therapy: new developments
-
23091399
-
J.S.Carew, K.R.Kelly, S.T.Nawrocki. Autophagy as a target for cancer therapy: new developments. Cancer Manag Res 2012; 4:357-65; PMID:23091399
-
(2012)
Cancer Manag Res
, vol.4
, pp. 357-365
-
-
Carew, J.S.1
Kelly, K.R.2
Nawrocki, S.T.3
-
57
-
-
84908089718
-
Autophagy as a modulator and target in prostate cancer
-
25134829
-
J.M.Farrow, J.C.Yang, C.P.Evans. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol 2014; 11:508-16; PMID:25134829; http://dx.doi.org/10.1038/nrurol.2014.196
-
(2014)
Nat Rev Urol
, vol.11
, pp. 508-516
-
-
Farrow, J.M.1
Yang, J.C.2
Evans, C.P.3
-
58
-
-
84923139164
-
Targeting autophagy in breast cancer
-
25114840
-
P.Maycotte, A.Thorburn. Targeting autophagy in breast cancer. World J Clin Oncol 2014; 5:224-40; PMID:25114840; http://dx.doi.org/10.5306/wjco.v5.i3.224
-
(2014)
World J Clin Oncol
, vol.5
, pp. 224-240
-
-
Maycotte, P.1
Thorburn, A.2
-
59
-
-
84891738225
-
Autophagy and human diseases
-
24323045
-
P.Jiang, N.Mizushima. Autophagy and human diseases. Cell Res 2014; 24:69-79; PMID:24323045; http://dx.doi.org/10.1038/cr.2013.161
-
(2014)
Cell Res
, vol.24
, pp. 69-79
-
-
Jiang, P.1
Mizushima, N.2
-
60
-
-
84863815882
-
The role of autophagy in clinical practice
-
22032864
-
A.L.Swampillai, P.Salomoni, S.C.Short. The role of autophagy in clinical practice. Clin Oncol (R Coll Radiol) 2012; 24:387-95; PMID:22032864; http://dx.doi.org/10.1016/j.clon.2011.09.010
-
(2012)
Clin Oncol (R Coll Radiol)
, vol.24
, pp. 387-395
-
-
Swampillai, A.L.1
Salomoni, P.2
Short, S.C.3
-
61
-
-
80052697287
-
The role of autophagy in cancer: therapeutic implications
-
21878654
-
Z.J.Yang, C.E.Chee, S.Huang, F.A.Sinicrope. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011; 10:1533-41; PMID:21878654; http://dx.doi.org/10.1158/1535-7163.MCT-11-0047
-
(2011)
Mol Cancer Ther
, vol.10
, pp. 1533-1541
-
-
Yang, Z.J.1
Chee, C.E.2
Huang, S.3
Sinicrope, F.A.4
-
62
-
-
69949106925
-
The double-edged sword of autophagy modulation in cancer
-
19706824
-
E.White, R.S.DiPaola. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15:5308-16; PMID:19706824; http://dx.doi.org/10.1158/1078-0432.CCR-07-5023
-
(2009)
Clin Cancer Res
, vol.15
, pp. 5308-5316
-
-
White, E.1
DiPaola, R.S.2
-
63
-
-
33846794896
-
Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
-
17235397
-
R.K.Amaravadi, D.Yu, J.J.Lum, T.Bui, M.A.Christophorou, G.I.Evan, A.Thomas-Tikhonenko, C.B.Thompson. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117:326-36; PMID:17235397; http://dx.doi.org/10.1172/JCI28833
-
(2007)
J Clin Invest
, vol.117
, pp. 326-336
-
-
Amaravadi, R.K.1
Yu, D.2
Lum, J.J.3
Bui, T.4
Christophorou, M.A.5
Evan, G.I.6
Thomas-Tikhonenko, A.7
Thompson, C.B.8
-
64
-
-
84871940714
-
Chloroquine in cancer therapy: a double-edged sword of autophagy
-
23288916
-
T.Kimura Y.Takabatake, A.Takahashi, Y.Isaka. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res 2013; 73:3-7; PMID:23288916; http://dx.doi.org/10.1158/0008-5472.CAN-12-2464
-
(2013)
Cancer Res
, vol.73
, pp. 3-7
-
-
Kimura, T.1
Takabatake, Y.2
Takahashi, A.3
Isaka, Y.4
-
65
-
-
33645115547
-
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial
-
16520474
-
J.Sotelo, E.Briceno, M.A.Lopez-Gonzalez. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2006; 144:337-43; PMID:16520474; http://dx.doi.org/10.7326/0003-4819-144-5-200603070-00008
-
(2006)
Ann Intern Med
, vol.144
, pp. 337-343
-
-
Sotelo, J.1
Briceno, E.2
Lopez-Gonzalez, M.A.3
-
66
-
-
84905826525
-
Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma
-
24991838
-
R.Rangwala, Y.C.Chang, J.Hu, K.M.Algazy, T.L.Evans, L.A.Fecher, L.M.Schuchter, D.A.Torigian, J.T.Panosian, A.B.Troxel, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 2014; 10:1391-402; PMID:24991838; http://dx.doi.org/10.4161/auto.29119
-
(2014)
Autophagy
, vol.10
, pp. 1391-1402
-
-
Rangwala, R.1
Chang, Y.C.2
Hu, J.3
Algazy, K.M.4
Evans, T.L.5
Fecher, L.A.6
Schuchter, L.M.7
Torigian, D.A.8
Panosian, J.T.9
Troxel, A.B.10
-
67
-
-
84920945138
-
A kinase-independent role for EGF receptor in autophagy initiation
-
25594178
-
X.Tan, N.Thapa, Y.Sun, R.A.Anderson. A kinase-independent role for EGF receptor in autophagy initiation. Cell 2015; 160:145-60; PMID:25594178; http://dx.doi.org/10.1016/j.cell.2014.12.006
-
(2015)
Cell
, vol.160
, pp. 145-160
-
-
Tan, X.1
Thapa, N.2
Sun, Y.3
Anderson, R.A.4
-
68
-
-
0034778447
-
EGFR and cancer prognosis
-
11597399
-
R.I.Nicholson, J.M.Gee, M.E.Harper. EGFR and cancer prognosis. Eur J Cancer 2001; 37:S9-15; PMID:11597399; http://dx.doi.org/10.1016/S0959-8049(01)00231-3
-
(2001)
Eur J Cancer
, vol.37
, pp. 9-15
-
-
Nicholson, R.I.1
Gee, J.M.2
Harper, M.E.3
-
69
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
19407826
-
Y.Chen, M.B.Azad, S.B.Gibson. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16:1040-52; PMID:19407826; http://dx.doi.org/10.1038/cdd.2009.49
-
(2009)
Cell Death Differ
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
70
-
-
20744433491
-
Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1
-
15964798
-
S.Shetty, B.A.Graham, J.G.Brown, X.Hu, N.Vegh-Yarema, G.Harding, J.T.Paul, S.B.Gibson. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 2005; 25:5404-16; PMID:15964798; http://dx.doi.org/10.1128/MCB.25.13.5404-5416.2005
-
(2005)
Mol Cell Biol
, vol.25
, pp. 5404-5416
-
-
Shetty, S.1
Graham, B.A.2
Brown, J.G.3
Hu, X.4
Vegh-Yarema, N.5
Harding, G.6
Paul, J.T.7
Gibson, S.B.8
-
71
-
-
0043091971
-
BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF
-
12879018
-
S.Kothari, J.Cizeau, E.McMillan-Ward, S.J.Israels, M.Bailes, K.Ens, L.A.Kirshenbaum, S.B.Gibson. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 2003; 22:4734-44; PMID:12879018; http://dx.doi.org/10.1038/sj.onc.1206666
-
(2003)
Oncogene
, vol.22
, pp. 4734-4744
-
-
Kothari, S.1
Cizeau, J.2
McMillan-Ward, E.3
Israels, S.J.4
Bailes, M.5
Ens, K.6
Kirshenbaum, L.A.7
Gibson, S.B.8
-
72
-
-
37349067228
-
Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells
-
17917680
-
Y.Chen, E.McMillan-Ward, J.Kong, S.J.Israels, S.B.Gibson. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2008; 15:171-82; PMID:17917680; http://dx.doi.org/10.1038/sj.cdd.4402233
-
(2008)
Cell Death Differ
, vol.15
, pp. 171-182
-
-
Chen, Y.1
McMillan-Ward, E.2
Kong, J.3
Israels, S.J.4
Gibson, S.B.5
-
73
-
-
77949557277
-
Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes
-
20070607
-
A.Hayer, M.Stoeber, C.Bissig, A.Helenius. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 2010; 11:361-82; PMID:20070607; http://dx.doi.org/10.1111/j.1600-0854.2009.01023.x
-
(2010)
Traffic
, vol.11
, pp. 361-382
-
-
Hayer, A.1
Stoeber, M.2
Bissig, C.3
Helenius, A.4
-
74
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
17534139
-
S.Kimura, T.Noda, T.Yoshimori. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3:452-60; PMID:17534139; http://dx.doi.org/10.4161/auto.4451
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
75
-
-
84891936587
-
Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling
-
24275666
-
Y.Chen, H.Wei, F.Liu, J.L.Guan. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J Biol Chem 2014; 289:1164-73; PMID:24275666; http://dx.doi.org/10.1074/jbc.M113.526335
-
(2014)
J Biol Chem
, vol.289
, pp. 1164-1173
-
-
Chen, Y.1
Wei, H.2
Liu, F.3
Guan, J.L.4
-
76
-
-
34548313955
-
Clonogenic assay of cells in vitro
-
17406473
-
N.A.Franken, H.M.Rodermond, J.Stap, J.Haveman, C.van Bree. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1:2315-9; PMID:17406473; http://dx.doi.org/10.1038/nprot.2006.339
-
(2006)
Nat Protoc
, vol.1
, pp. 2315-2319
-
-
Franken, N.A.1
Rodermond, H.M.2
Stap, J.3
Haveman, J.4
van Bree, C.5
|