-
1
-
-
84855396777
-
Executive summary: Heart disease and stroke statistics-2012 update: A report from the American Heart Association
-
Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee, Stroke Statistics Subcommitte. Executive summary: heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 2012;125:188-197.
-
(2012)
Circulation
, vol.125
, pp. 188-197
-
-
Roger, V.L.1
Go, A.S.2
Lloyd-Jones, D.M.3
Benjamin, E.J.4
Berry, J.D.5
Borden, W.B.6
Bravata, D.M.7
Dai, S.8
Ford, E.S.9
Fox, C.S.10
Fullerton, H.J.11
Gillespie, C.12
Hailpern, S.M.13
Heit, J.A.14
Howard, V.J.15
Kissela, B.M.16
Kittner, S.J.17
Lackland, D.T.18
Lichtman, J.H.19
Lisabeth, L.D.20
Makuc, D.M.21
Marcus, G.M.22
Marelli, A.23
Matchar, D.B.24
Moy, C.S.25
Mozaffarian, D.26
Mussolino, M.E.27
Nichol, G.28
Paynter, N.P.29
Soliman, E.Z.30
Sorlie, P.D.31
Sotoodehnia, N.32
Turan, T.N.33
Virani, S.S.34
Wong, N.D.35
Woo, D.36
Turner, M.B.37
more..
-
2
-
-
84878850858
-
Cardiac stem cell therapy and the promise of heart regeneration
-
Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013;12:689-698.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 689-698
-
-
Garbern, J.C.1
Lee, R.T.2
-
3
-
-
84923535492
-
An emerging consensus on cardiac regeneration
-
van Berlo JH, Molkentin JD. An emerging consensus on cardiac regeneration. Nat Med 2014;20:1386-1393.
-
(2014)
Nat Med
, vol.20
, pp. 1386-1393
-
-
Van Berlo, J.H.1
Molkentin, J.D.2
-
5
-
-
84861761564
-
Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish
-
Gonzalez-Rosa JM, Mercader N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat Protoc 2012;7:782-788.
-
(2012)
Nat Protoc
, vol.7
, pp. 782-788
-
-
Gonzalez-Rosa, J.M.1
Mercader, N.2
-
6
-
-
79960778952
-
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
-
Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 2011;138:3421-3430.
-
(2011)
Development
, vol.138
, pp. 3421-3430
-
-
Wang, J.1
Panakova, D.2
Kikuchi, K.3
Holdway, J.E.4
Gemberling, M.5
Burris, J.S.6
Singh, S.P.7
Dickson, A.L.8
Lin, Y.F.9
Sabeh, M.K.10
Werdich, A.A.11
Yelon, D.12
Macrae, C.A.13
Poss, K.D.14
-
7
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4 (+) cardiomyocytes
-
Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4 (+) cardiomyocytes. Nature 2010;464:601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
Holdway, J.E.2
Werdich, A.A.3
Anderson, R.M.4
Fang, Y.5
Egnaczyk, G.F.6
Evans, T.7
Macrae, C.A.8
Stainier, D.Y.9
Poss, K.D.10
-
8
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010;464:606-609.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
Sleep, E.2
Raya, M.3
Marti, M.4
Raya, A.5
Izpisua Belmonte, J.C.6
-
9
-
-
84879688282
-
In vivo cardiac reprogramming contributes to zebrafish heart regeneration
-
Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, Yelon D, Chi NC. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 2013;498:497-501.
-
(2013)
Nature
, vol.498
, pp. 497-501
-
-
Zhang, R.1
Han, P.2
Yang, H.3
Ouyang, K.4
Lee, D.5
Lin, Y.F.6
Ocorr, K.7
Kang, G.8
Chen, J.9
Stainier, D.Y.10
Yelon, D.11
Chi, N.C.12
-
10
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science 2011;331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
Sadek, H.A.7
-
11
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996;28:1737-1746.
-
(1996)
J Mol Cell Cardiol
, vol.28
, pp. 1737-1746
-
-
Li, F.1
Wang, X.2
Capasso, J.M.3
Gerdes, A.M.4
-
12
-
-
84899533827
-
The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response
-
Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014;157:565-579.
-
(2014)
Cell
, vol.157
, pp. 565-579
-
-
Puente, B.N.1
Kimura, W.2
Muralidhar, S.A.3
Moon, J.4
Amatruda, J.F.5
Phelps, K.L.6
Grinsfelder, D.7
Rothermel, B.A.8
Chen, R.9
Garcia, J.A.10
Santos, C.X.11
Thet, S.12
Mori, E.13
Kinter, M.T.14
Rindler, P.M.15
Zacchigna, S.16
Mukherjee, S.17
Chen, D.J.18
Mahmoud, A.I.19
Giacca, M.20
Rabinovitch, P.S.21
Aroumougame, A.22
Shah, A.M.23
Szweda, L.I.24
Sadek, H.A.25
more..
-
13
-
-
0042161933
-
Sizing up the heart: Development redux in disease
-
Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev 2003;17:1937-1956.
-
(2003)
Genes Dev
, vol.17
, pp. 1937-1956
-
-
Olson, E.N.1
Schneider, M.D.2
-
14
-
-
74049114704
-
Intramyocardial fibroblast myocyte communication
-
Kakkar R, Lee RT. Intramyocardial fibroblast myocyte communication. Circ Res 2010;106:47-57.
-
(2010)
Circ Res
, vol.106
, pp. 47-57
-
-
Kakkar, R.1
Lee, R.T.2
-
16
-
-
84952714823
-
Harnessing the microRNA pathway for cardiac regeneration
-
Giacca M, Zacchigna S. Harnessing the microRNA pathway for cardiac regeneration. J Mol Cell Cardiol 2015;89:68-74.
-
(2015)
J Mol Cell Cardiol
, vol.89
, pp. 68-74
-
-
Giacca, M.1
Zacchigna, S.2
-
17
-
-
64249165694
-
MicroRNA regulation of cardiovascular development
-
Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development. Circ Res 2009;104:724-732.
-
(2009)
Circ Res
, vol.104
, pp. 724-732
-
-
Cordes, K.R.1
Srivastava, D.2
-
18
-
-
84858379476
-
MicroRNAs in stress signaling and human disease
-
Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012;148:1172-1187.
-
(2012)
Cell
, vol.148
, pp. 1172-1187
-
-
Mendell, J.T.1
Olson, E.N.2
-
19
-
-
84857981122
-
Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing
-
Schroen B, Heymans S. Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res 2012;93:605-613.
-
(2012)
Cardiovasc Res
, vol.93
, pp. 605-613
-
-
Schroen, B.1
Heymans, S.2
-
20
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW II, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007;13:613-618.
-
(2007)
Nat Med
, vol.13
, pp. 613-618
-
-
Care, A.1
Catalucci, D.2
Felicetti, F.3
Bonci, D.4
Addario, A.5
Gallo, P.6
Bang, M.L.7
Segnalini, P.8
Gu, Y.9
Dalton, N.D.10
Elia, L.11
Latronico, M.V.12
Hoydal, M.13
Autore, C.14
Russo, M.A.15
Dorn, G.W.16
Ellingsen, O.17
Ruiz-Lozano, P.18
Peterson, K.L.19
Croce, C.M.20
Peschle, C.21
Condorelli, G.22
more..
-
21
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006;103:18255-18260.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 18255-18260
-
-
Van Rooij, E.1
Sutherland, L.B.2
Liu, N.3
Williams, A.H.4
McAnally, J.5
Gerard, R.D.6
Richardson, J.A.7
Olson, E.N.8
-
22
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008;456:980-984.
-
(2008)
Nature
, vol.456
, pp. 980-984
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
Fischer, T.4
Kissler, S.5
Bussen, M.6
Galuppo, P.7
Just, S.8
Rottbauer, W.9
Frantz, S.10
Castoldi, M.11
Soutschek, J.12
Koteliansky, V.13
Rosenwald, A.14
Basson, M.A.15
Licht, J.D.16
Pena, J.T.17
Rouhanifard, S.H.18
Muckenthaler, M.U.19
Tuschl, T.20
Martin, G.R.21
Bauersachs, J.22
Engelhardt, S.23
more..
-
23
-
-
80052557916
-
MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes
-
Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW II, van Rooij E, Olson EN. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011;109:670-679.
-
(2011)
Circ Res
, vol.109
, pp. 670-679
-
-
Porrello, E.R.1
Johnson, B.A.2
Aurora, A.B.3
Simpson, E.4
Nam, Y.J.5
Matkovich, S.J.6
Dorn, G.W.7
Van Rooij, E.8
Olson, E.N.9
-
24
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012;492:376-381.
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
Mano, M.2
Dal Ferro, M.3
Zentilin, L.4
Sinagra, G.5
Zacchigna, S.6
Giacca, M.7
-
25
-
-
57749121689
-
MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008;22:3242-3254.
-
(2008)
Genes Dev
, vol.22
, pp. 3242-3254
-
-
Liu, N.1
Bezprozvannaya, S.2
Williams, A.H.3
Qi, X.4
Richardson, J.A.5
Bassel-Duby, R.6
Olson, E.N.7
-
26
-
-
84876419552
-
MicroRNAs in the regeneration of skeletal muscle
-
Yu X, Zuo Q. MicroRNAs in the regeneration of skeletal muscle. Front Biosci 2013;18:608-615.
-
(2013)
Front Biosci
, vol.18
, pp. 608-615
-
-
Yu, X.1
Zuo, Q.2
-
27
-
-
84880040358
-
Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts
-
Chen J, Huang ZP, SeokHY, Ding J, Kataoka M, Zhang Z, HuX, Wang G, Lin Z, WangS, Pu WT, Liao R, Wang DZ. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013;112:1557-1566.
-
(2013)
Circ Res
, vol.112
, pp. 1557-1566
-
-
Chen, J.1
Huang, Z.P.2
Seok, H.Y.3
Ding, J.4
Kataoka, M.5
Zhang, Z.6
Hu, X.7
Wang, G.8
Lin, Z.9
Wang, S.10
Pu, W.T.11
Liao, R.12
Wang, D.Z.13
-
28
-
-
40949130398
-
MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells
-
Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 2008;15:259-267.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 259-267
-
-
Sinkkonen, L.1
Hugenschmidt, T.2
Berninger, P.3
Gaidatzis, D.4
Mohn, F.5
Artus-Revel, C.G.6
Zavolan, M.7
Svoboda, P.8
Filipowicz, W.9
-
29
-
-
70349764482
-
Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells
-
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009;36:61-74.
-
(2009)
Mol Cell
, vol.36
, pp. 61-74
-
-
Juan, A.H.1
Kumar, R.M.2
Marx, J.G.3
Young, R.A.4
Sartorelli, V.5
-
30
-
-
84862777974
-
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
-
Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 2012;44:343-347.
-
(2012)
Nat Genet
, vol.44
, pp. 343-347
-
-
Delgado-Olguin, P.1
Huang, Y.2
Li, X.3
Christodoulou, D.4
Seidman, C.E.5
Seidman, J.G.6
Tarakhovsky, A.7
Bruneau, B.G.8
-
31
-
-
84856707310
-
Polycomb repressive complex 2 regulates normal development of the mouse heart
-
He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, Daley GQ, Kong SW, Orkin SH, Seidman CE, Seidman JG, Pu WT. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 2012;110:406-415.
-
(2012)
Circ Res
, vol.110
, pp. 406-415
-
-
He, A.1
Ma, Q.2
Cao, J.3
Von Gise, A.4
Zhou, P.5
Xie, H.6
Zhang, B.7
Hsing, M.8
Christodoulou, D.C.9
Cahan, P.10
Daley, G.Q.11
Kong, S.W.12
Orkin, S.H.13
Seidman, C.E.14
Seidman, J.G.15
Pu, W.T.16
-
32
-
-
84878685640
-
MicroRNA-31-5p modulates cell cycle by targeting human mutL homolog 1 in human cancer cells
-
ZhongZ, Dong Z, Yang L, Chen X, Gong Z. MicroRNA-31-5p modulates cell cycle by targeting human mutL homolog 1 in human cancer cells. Tumour Biol 2013;34:1959-1965.
-
(2013)
Tumour Biol
, vol.34
, pp. 1959-1965
-
-
Zhong, Z.1
Dong, Z.2
Yang, L.3
Chen, X.4
Gong, Z.5
-
33
-
-
84861542135
-
MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein
-
Zhu Y, Lu Y, Zhang Q, LiuJJ, Li TJ, YangJR, Zeng C, Zhuang SM. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 2012;40:4615-4625.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4615-4625
-
-
Zhu, Y.1
Lu, Y.2
Zhang, Q.3
Liu, J.J.4
Li, T.J.5
Yang, J.R.6
Zeng, C.7
Zhuang, S.M.8
-
34
-
-
84859367664
-
Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration
-
ZhouJJu W, Wang D, Wu L, ZhuX, GuoZ, HeX Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One 2012;7:e33577.
-
(2012)
PLoS One
, vol.7
, pp. e33577
-
-
Zhou, J.Ju.W.1
Wang, D.2
Wu, L.3
Zhu, X.4
Guo, Z.5
He, X.6
-
35
-
-
84880699142
-
MiR-26a inhibits proliferation and motility in bladder cancer by targeting HMGA1
-
Lin Y, Chen H, Hu Z, Mao Y, Xu X, Zhu Y, Xu X, Wu J, Li S, Mao Q, Zheng X, Xie L miR-26a inhibits proliferation and motility in bladder cancer by targeting HMGA1. FEBS Lett 2013;587:2467-2473.
-
(2013)
FEBS Lett
, vol.587
, pp. 2467-2473
-
-
Lin, Y.1
Chen, H.2
Hu, Z.3
Mao, Y.4
Xu, X.5
Zhu, Y.6
Xu, X.7
Wu, J.8
Li, S.9
Mao, Q.10
Zheng, X.11
Xie, L.12
-
36
-
-
84878647867
-
MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1
-
GaoJ, Li L, Wu M, Liu M, XieX, GuoJ, Tang H, Xie X MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One 2013;8:e65138.
-
(2013)
PLoS One
, vol.8
, pp. e65138
-
-
Gao, J.1
Li, L.2
Wu, M.3
Liu, M.4
Xie, X.5
Guo, J.6
Tang, H.7
Xie, X.8
-
37
-
-
84864115273
-
MiR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1
-
Kim KM, Park SJ, Jung SH, Kim EJ Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 2012;27:1669-1679.
-
(2012)
J Bone Miner Res
, vol.27
, pp. 1669-1679
-
-
Kim, K.M.1
Park, S.J.2
Jung, S.H.3
Kim, E.J.4
Jogeswar, G.5
Ajita, J.6
Rhee, Y.7
Kim, C.H.8
Lim, S.K.9
-
38
-
-
84873850704
-
MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer
-
Hirata H, Ueno K, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R. MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PLoS One 2013;8:e55502.
-
(2013)
PLoS One
, vol.8
, pp. e55502
-
-
Hirata, H.1
Ueno, K.2
Shahryari, V.3
Deng, G.4
Tanaka, Y.5
Tabatabai, Z.L.6
Hinoda, Y.7
Dahiya, R.8
-
39
-
-
84862650219
-
Pleiotropic effects of miR-183∼96∼182 converge to regulate cell survival, proliferation and migration in medulloblastoma
-
Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, Sengupta S, ArcherT, Remke M, Bai AH, Warren P, Pfister SM, SteenJA, PomeroySL, Cho YJ. Pleiotropic effects of miR-183∼96∼182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 2012;123:539-552.
-
(2012)
Acta Neuropathol
, vol.123
, pp. 539-552
-
-
Weeraratne, S.D.1
Amani, V.2
Teider, N.3
Pierre-Francois, J.4
Winter, D.5
Kye, M.J.6
Sengupta, S.7
Archer, T.8
Remke, M.9
Bai, A.H.10
Warren, P.11
Pfister, S.M.12
Steen, J.A.13
Pomeroy, S.L.14
Cho, Y.J.15
-
40
-
-
78650249083
-
MicroRNA-184-mediated inhibition of tumour growth in an orthotopic murine model of neuroblastoma
-
Tivnan A, Foley NH, Tracey L, Davidoff AM, Stallings RL MicroRNA-184-mediated inhibition of tumour growth in an orthotopic murine model of neuroblastoma. Anticancer Res 2010;30:4391-4395.
-
(2010)
Anticancer Res
, vol.30
, pp. 4391-4395
-
-
Tivnan, A.1
Foley, N.H.2
Tracey, L.3
Davidoff, A.M.4
Stallings, R.L.5
-
41
-
-
77952028244
-
MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma
-
Chen J, Feilotter HE, Pare GC, Zhang X, Pemberton JG, Garady C, Lai D, Yang X, Tron VA. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol 2010;176:2520-2529.
-
(2010)
Am J Pathol
, vol.176
, pp. 2520-2529
-
-
Chen, J.1
Feilotter, H.E.2
Pare, G.C.3
Zhang, X.4
Pemberton, J.G.5
Garady, C.6
Lai, D.7
Yang, X.8
Tron, V.A.9
-
42
-
-
84859444423
-
Both inhibition and enhanced expression of miR-31 lead to reduced migration and invasion of pancreatic cancer cells
-
Laurila EM, Sandstrom S, Rantanen LM, Autio R, Kallioniemi A. Both inhibition and enhanced expression of miR-31 lead to reduced migration and invasion of pancreatic cancer cells. Genes Chromosomes Cancer 2012;51:557-568.
-
(2012)
Genes Chromosomes Cancer
, vol.51
, pp. 557-568
-
-
Laurila, E.M.1
Sandstrom, S.2
Rantanen, L.M.3
Autio, R.4
Kallioniemi, A.5
-
43
-
-
84869054400
-
MiR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury
-
Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012;40:10356-10365.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 10356-10365
-
-
Yu, B.1
Qian, T.2
Wang, Y.3
Zhou, S.4
Ding, G.5
Ding, F.6
Gu, X.7
-
44
-
-
78649910285
-
MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration
-
Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010;70:9570-9580.
-
(2010)
Cancer Res
, vol.70
, pp. 9570-9580
-
-
Sarver, A.L.1
Li, L.2
Subramanian, S.3
-
45
-
-
82755162967
-
MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2
-
Liu X, Cheng Y, Chen X, YangJ, Xu L, Zhang C. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem 2011;286:42371-42380.
-
(2011)
J Biol Chem
, vol.286
, pp. 42371-42380
-
-
Liu, X.1
Cheng, Y.2
Chen, X.3
Yang, J.4
Xu, L.5
Zhang, C.6
-
46
-
-
84861825526
-
MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation
-
SunX, Icli B, WaraAK, Belkin N, HeS, KobzikL, HunninghakeGM, Vera MP, Registry M, Blackwell TS, Baron RM, Feinberg MW. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest 2012;122:1973-1990.
-
(2012)
J Clin Invest
, vol.122
, pp. 1973-1990
-
-
Sun, X.1
Icli, B.2
Wara, A.K.3
Belkin, N.4
He, S.5
Kobzik, L.6
Hunninghake, G.M.7
Vera, M.P.8
Registry, M.9
Blackwell, T.S.10
Baron, R.M.11
Feinberg, M.W.12
-
47
-
-
84874822850
-
MiR-181a regulates inflammation responses in monocytes and macrophages
-
Xie W, Li M, Xu N, Lv Q, Huang N, He J, Zhang Y MiR-181a regulates inflammation responses in monocytes and macrophages. PLoS One 2013;8:e58639.
-
(2013)
PLoS One
, vol.8
, pp. e58639
-
-
Xie, W.1
Li, M.2
Xu, N.3
Lv, Q.4
Huang, N.5
He, J.6
Zhang, Y.7
-
48
-
-
59849128881
-
MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling
-
176p following 178
-
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009;104:170-178, 176p following 178.
-
(2009)
Circ Res
, vol.104
, pp. 170-178
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
Leenders, J.J.4
Lentink, V.5
Van Der Made, I.6
Herias, V.7
Van Leeuwen, R.E.8
Schellings, M.W.9
Barenbrug, P.10
Maessen, J.G.11
Heymans, S.12
Pinto, Y.M.13
Creemers, E.E.14
-
49
-
-
79955800181
-
Elevated miR-499 levels blunt the cardiac stress response
-
Shieh JT, Huang Y, Gilmore J, Srivastava D. Elevated miR-499 levels blunt the cardiac stress response. PLoS One 2011;6:e19481.
-
(2011)
PLoS One
, vol.6
, pp. e19481
-
-
Shieh, J.T.1
Huang, Y.2
Gilmore, J.3
Srivastava, D.4
-
50
-
-
79952783637
-
Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease
-
Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 2010;3:499-506.
-
(2010)
Circ Cardiovasc Genet
, vol.3
, pp. 499-506
-
-
Corsten, M.F.1
Dennert, R.2
Jochems, S.3
Kuznetsova, T.4
Devaux, Y.5
Hofstra, L.6
Wagner, D.R.7
Staessen, J.A.8
Heymans, S.9
Schroen, B.10
-
51
-
-
84860361227
-
Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro
-
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2012;40:3329-3347.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 3329-3347
-
-
Voronova, A.1
Al Madhoun, A.2
Fischer, A.3
Shelton, M.4
Karamboulas, C.5
Skerjanc, I.S.6
-
52
-
-
0037049996
-
Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo
-
Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 2002;415:168-171.
-
(2002)
Nature
, vol.415
, pp. 168-171
-
-
Yanagisawa, H.1
Davis, E.C.2
Starcher, B.C.3
Ouchi, T.4
Yanagisawa, M.5
Richardson, J.A.6
Olson, E.N.7
-
53
-
-
34447546675
-
Fibulin-5 functions as an endogenous angiogenesis inhibitor
-
Sullivan KM, Bissonnette R, Yanagisawa H, Hussain SN, Davis EC. Fibulin-5 functions as an endogenous angiogenesis inhibitor. Lab Invest 2007;87:818-827.
-
(2007)
Lab Invest
, vol.87
, pp. 818-827
-
-
Sullivan, K.M.1
Bissonnette, R.2
Yanagisawa, H.3
Hussain, S.N.4
Davis, E.C.5
-
54
-
-
33747366304
-
Gene expression analysis of zebrafish heart regeneration
-
Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biol 2006;4:e260.
-
(2006)
PLoS Biol
, vol.4
, pp. e260
-
-
Lien, C.L.1
Schebesta, M.2
Makino, S.3
Weber, G.J.4
Keating, M.T.5
-
56
-
-
26444496162
-
Cooperative interaction of Angiopoietin-like proteins 1 and 2 in zebrafish vascular development
-
Kubota Y, Oike Y, Satoh S, Tabata Y, Niikura Y, Morisada T, Akao M, Urano T, Ito Y, Miyamoto T, Nagai N, Koh GY, Watanabe S, Suda T. Cooperative interaction of Angiopoietin-like proteins 1 and 2 in zebrafish vascular development. Proc Natl Acad Sci U S A 2005;102:13502-13507.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 13502-13507
-
-
Kubota, Y.1
Oike, Y.2
Satoh, S.3
Tabata, Y.4
Niikura, Y.5
Morisada, T.6
Akao, M.7
Urano, T.8
Ito, Y.9
Miyamoto, T.10
Nagai, N.11
Koh, G.Y.12
Watanabe, S.13
Suda, T.14
-
57
-
-
84875256517
-
Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury
-
Tian Z, Miyata K, Tazume H, Sakaguchi H, Kadomatsu T, Horio E, Takahashi O, Komohara Y, Araki K, Hirata Y, Tabata M, Takanashi S, Takeya M, Hao H, Shimabukuro M, Sata M, Kawasuji M, Oike Y. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury. J Mol Cell Cardiol 2013;57:1-12.
-
(2013)
J Mol Cell Cardiol
, vol.57
, pp. 1-12
-
-
Tian, Z.1
Miyata, K.2
Tazume, H.3
Sakaguchi, H.4
Kadomatsu, T.5
Horio, E.6
Takahashi, O.7
Komohara, Y.8
Araki, K.9
Hirata, Y.10
Tabata, M.11
Takanashi, S.12
Takeya, M.13
Hao, H.14
Shimabukuro, M.15
Sata, M.16
Kawasuji, M.17
Oike, Y.18
-
58
-
-
84879335696
-
Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components
-
Piatkowski T, Muhlfeld C, Borchardt T, Braun T. Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components. Stem Cells Dev 2013;22:1921-1931.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 1921-1931
-
-
Piatkowski, T.1
Muhlfeld, C.2
Borchardt, T.3
Braun, T.4
-
59
-
-
79953678403
-
The zebrafish heart regenerates after cryoinjury-induced myocardial infarction
-
Chablais F, Veit J, Rainer G, Jazwinska A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 2011;11:21.
-
(2011)
BMC Dev Biol
, vol.11
, pp. 21
-
-
Chablais, F.1
Veit, J.2
Rainer, G.3
Jazwinska, A.4
-
60
-
-
66449136951
-
Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model
-
Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-1017.
-
(2009)
Cell
, vol.137
, pp. 1005-1017
-
-
Kota, J.1
Chivukula, R.R.2
O'Donnell, K.A.3
Wentzel, E.A.4
Montgomery, C.L.5
Hwang, H.W.6
Chang, T.C.7
Vivekanandan, P.8
Torbenson, M.9
Clark, K.R.10
Mendell, J.R.11
Mendell, J.T.12
-
61
-
-
84856505104
-
Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival
-
Chen L, Ma Y, Kim EY, Yu W, Schwartz RJ, Qian L, Wang J. Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival. PLoS One 2012;7:e31005.
-
(2012)
PLoS One
, vol.7
, pp. e31005
-
-
Chen, L.1
Ma, Y.2
Kim, E.Y.3
Yu, W.4
Schwartz, R.J.5
Qian, L.6
Wang, J.7
-
62
-
-
4344717801
-
Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes
-
Ahuja P, Perriard E, Perriard JC, Ehler E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 2004;117:3295-3306.
-
(2004)
J Cell Sci
, vol.117
, pp. 3295-3306
-
-
Ahuja, P.1
Perriard, E.2
Perriard, J.C.3
Ehler, E.4
-
63
-
-
67650569135
-
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009;138:257-270.
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
Arab, S.2
Haring, B.3
Kuhn, B.4
-
64
-
-
84872611623
-
Mammalian heart renewal by pre-existing cardiomyocytes
-
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013;493:433-436.
-
(2013)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
Steinhauser, M.L.2
Pizzimenti, C.L.3
Yang, V.K.4
Cai, L.5
Wang, M.6
Wu, T.D.7
Guerquin-Kern, J.L.8
Lechene, C.P.9
Lee, R.T.10
-
65
-
-
84859989029
-
Regulation of zebrafish heart regeneration by miR-133
-
Yin VP, Lepilina A, Smith A, Poss KD. Regulation of zebrafish heart regeneration by miR-133. Dev Biol 2012;365:319-327.
-
(2012)
Dev Biol
, vol.365
, pp. 319-327
-
-
Yin, V.P.1
Lepilina, A.2
Smith, A.3
Poss, K.D.4
-
66
-
-
84922646378
-
In vivo activation of a conserved microRNA program induces mammalian heart regeneration
-
Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, Kurian L, Ocampo A, Vazquez-Ferrer E, Rodriguez-Esteban C, Kumar S, Moresco JJ, Yates JR III, Campistol JM, Sancho-Martinez I, Giacca M, Izpisua Belmonte JC. In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 2014;15:589-604.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 589-604
-
-
Aguirre, A.1
Montserrat, N.2
Zacchigna, S.3
Nivet, E.4
Hishida, T.5
Krause, M.N.6
Kurian, L.7
Ocampo, A.8
Vazquez-Ferrer, E.9
Rodriguez-Esteban, C.10
Kumar, S.11
Moresco, J.J.12
Yates, J.R.13
Campistol, J.M.14
Sancho-Martinez, I.15
Giacca, M.16
Izpisua Belmonte, J.C.17
-
67
-
-
84860145209
-
Matricellular proteins in cardiac adaptation and disease
-
Frangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol Rev 2012;92:635-688.
-
(2012)
Physiol Rev
, vol.92
, pp. 635-688
-
-
Frangogiannis, N.G.1
-
68
-
-
79955364546
-
Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
-
Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 2011;138:1663-1674.
-
(2011)
Development
, vol.138
, pp. 1663-1674
-
-
Gonzalez-Rosa, J.M.1
Martin, V.2
Peralta, M.3
Torres, M.4
Mercader, N.5
-
69
-
-
84906653542
-
The Notch pathway controls fibrotic and regenerative repair in the adult heart
-
Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, Sarre A, Radtke F, Pedrazzini T. The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J 2014;35:2174-2185.
-
(2014)
Eur Heart J
, vol.35
, pp. 2174-2185
-
-
Nemir, M.1
Metrich, M.2
Plaisance, I.3
Lepore, M.4
Cruchet, S.5
Berthonneche, C.6
Sarre, A.7
Radtke, F.8
Pedrazzini, T.9
-
70
-
-
63349086813
-
From fish to amphibians to mammals: In search of novel strategies to optimize cardiac regeneration
-
Ausoni S, Sartore S. From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol 2009;184:357-364.
-
(2009)
J Cell Biol
, vol.184
, pp. 357-364
-
-
Ausoni, S.1
Sartore, S.2
-
71
-
-
84888131596
-
MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling
-
Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF, Shi J, Cheng HW, Raghuram S, Arany Z, Liao R, Croce K, MacRae C, Feinberg MW. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 2013;113:1231-1241.
-
(2013)
Circ Res
, vol.113
, pp. 1231-1241
-
-
Icli, B.1
Wara, A.K.2
Moslehi, J.3
Sun, X.4
Plovie, E.5
Cahill, M.6
Marchini, J.F.7
Schissler, A.8
Padera, R.F.9
Shi, J.10
Cheng, H.W.11
Raghuram, S.12
Arany, Z.13
Liao, R.14
Croce, K.15
MacRae, C.16
Feinberg, M.W.17
-
72
-
-
84875513890
-
NF-kappaB mediated miR-26a regulation in cardiac fibrosis
-
Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 2013;228:1433-1442.
-
(2013)
J Cell Physiol
, vol.228
, pp. 1433-1442
-
-
Wei, C.1
Kim, I.K.2
Kumar, S.3
Jayasinghe, S.4
Hong, N.5
Castoldi, G.6
Catalucci, D.7
Jones, W.K.8
Gupta, S.9
|