메뉴 건너뛰기




Volumn 82, Issue 9, 2016, Pages 2709-2717

A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI;

EID: 84965175479     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00224-16     Document Type: Article
Times cited : (66)

References (45)
  • 1
    • 85016489978 scopus 로고    scopus 로고
    • Clinically important features of porphyrin and heme metabolism and the porphyrias
    • Besur S, Hou W, Schmeltzer P, Bonkovsky HL. 2014. Clinically important features of porphyrin and heme metabolism and the porphyrias. Metabolites 4:977-1006. http://dx.doi.org/10.3390/metabo4040977.
    • (2014) Metabolites , vol.4 , pp. 977-1006
    • Besur, S.1    Hou, W.2    Schmeltzer, P.3    Bonkovsky, H.L.4
  • 2
    • 85027957868 scopus 로고    scopus 로고
    • Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid
    • Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N. 2014. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagnosis Photodyn Ther 11:319-330. http://dx.doi.org/10.1016/j.pdpdt.2014.04.004.
    • (2014) Photodiagnosis Photodyn Ther , vol.11 , pp. 319-330
    • Tetard, M.C.1    Vermandel, M.2    Mordon, S.3    Lejeune, J.P.4    Reyns, N.5
  • 3
    • 84921876188 scopus 로고    scopus 로고
    • Critical role of ABCG2 in ALA-photodynamic diagnosis and therapy of human brain tumor
    • Ishikawa T, Kajimoto Y, Inoue Y, Ikegami Y, Kuroiwa T. 2015. Critical role of ABCG2 in ALA-photodynamic diagnosis and therapy of human brain tumor. Adv Cancer Res 125:197-216. http://dx.doi.org/10.1016/bs.acr.2014.11.008.
    • (2015) Adv Cancer Res , vol.125 , pp. 197-216
    • Ishikawa, T.1    Kajimoto, Y.2    Inoue, Y.3    Ikegami, Y.4    Kuroiwa, T.5
  • 4
    • 0036173134 scopus 로고    scopus 로고
    • Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid
    • Sasaki K, Watanabe M, Tanaka T, Tanaka T. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23-29. http://dx.doi.org/10.1007/s00253-001-0858-7.
    • (2002) Appl Microbiol Biotechnol , vol.58 , pp. 23-29
    • Sasaki, K.1    Watanabe, M.2    Tanaka, T.3    Tanaka, T.4
  • 5
    • 33744468549 scopus 로고    scopus 로고
    • Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro
    • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K. 2006. Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27-34.
    • (2006) Plant Growth Regul , vol.49 , pp. 27-34
    • Zhang, Z.J.1    Li, H.Z.2    Zhou, W.J.3    Takeuchi, Y.4    Yoneyama, K.5
  • 6
    • 0028890255 scopus 로고
    • Regulation of heme biosynthesis in Escherichia coli
    • Woodard SI, Dailey HA. 1995. Regulation of heme biosynthesis in Escherichia coli. Arch Biochem Biophys 316:110-115. http://dx.doi.org/10.1006/abbi.1995.1016.
    • (1995) Arch Biochem Biophys , vol.316 , pp. 110-115
    • Woodard, S.I.1    Dailey, H.A.2
  • 7
    • 80052032501 scopus 로고    scopus 로고
    • Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose
    • Kang Z, Wang Y, Gu P, Wang Q, Qi Q. 2011. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492-498. http://dx.doi.org/10.1016/j.ymben.2011.05.003.
    • (2011) Metab Eng , vol.13 , pp. 492-498
    • Kang, Z.1    Wang, Y.2    Gu, P.3    Wang, Q.4    Qi, Q.5
  • 8
    • 84892983213 scopus 로고    scopus 로고
    • Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli
    • Li F, Wang Y, Gong K, Wang Q, Liang Q, Qi Q. 2014. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol Lett 350:209-215. http://dx.doi.org/10.1111/1574-6968.12322.
    • (2014) FEMS Microbiol Lett , vol.350 , pp. 209-215
    • Li, F.1    Wang, Y.2    Gong, K.3    Wang, Q.4    Liang, Q.5    Qi, Q.6
  • 9
    • 84923882067 scopus 로고    scopus 로고
    • Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli
    • Zhang J, Kang Z, Chen J, Du G. 2015. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep 5:8584. http://dx.doi.org/10.1038/srep08584.
    • (2015) Sci Rep , vol.5 , pp. 8584
    • Zhang, J.1    Kang, Z.2    Chen, J.3    Du, G.4
  • 10
    • 77949287840 scopus 로고    scopus 로고
    • D-Glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture
    • Liu XX, Wang L, Wang YJ, Cai LL. 2010. D-Glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Appl Biochem Biotechnol 160:822-830. http://dx.doi.org/10.1007/s12010-009-8608-x.
    • (2010) Appl Biochem Biotechnol , vol.160 , pp. 822-830
    • Liu, X.X.1    Wang, L.2    Wang, Y.J.3    Cai, L.L.4
  • 11
    • 58149200894 scopus 로고    scopus 로고
    • Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production
    • Lin J, Fu W, Cen P. 2009. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol 100:2293-2297. http://dx.doi.org/10.1016/j.biortech.2008.11.008.
    • (2009) Bioresour Technol , vol.100 , pp. 2293-2297
    • Lin, J.1    Fu, W.2    Cen, P.3
  • 12
    • 41849091540 scopus 로고    scopus 로고
    • Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system
    • Fu W, Lin J, Cen P. 2008. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresour Technol 99:4864-4870. http://dx.doi.org/10.1016/j.biortech.2007.09.039.
    • (2008) Bioresour Technol , vol.99 , pp. 4864-4870
    • Fu, W.1    Lin, J.2    Cen, P.3
  • 13
    • 34547407784 scopus 로고    scopus 로고
    • 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain
    • Fu W, Lin J, Cen P. 2007. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl Microbiol Biotechnol 75:777-782. http://dx.doi.org/10.1007/s00253-007-0887-y.
    • (2007) Appl Microbiol Biotechnol , vol.75 , pp. 777-782
    • Fu, W.1    Lin, J.2    Cen, P.3
  • 14
    • 84876971950 scopus 로고    scopus 로고
    • Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production
    • Zhang L, Chen J, Chen N, Sun J, Zheng P, Ma Y. 2013. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnol Lett 35:763-768. http://dx.doi.org/10.1007/s10529-013-1143-4.
    • (2013) Biotechnol Lett , vol.35 , pp. 763-768
    • Zhang, L.1    Chen, J.2    Chen, N.3    Sun, J.4    Zheng, P.5    Ma, Y.6
  • 15
    • 84901239965 scopus 로고    scopus 로고
    • High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties
    • Lou JW, Zhu L, Wu MB, Yang LR, Lin JP, Cen PL. 2014. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J Zhejiang Univ Sci B 15: 491-499. http://dx.doi.org/10.1631/jzus.B1300283.
    • (2014) J Zhejiang Univ Sci B , vol.15 , pp. 491-499
    • Lou, J.W.1    Zhu, L.2    Wu, M.B.3    Yang, L.R.4    Lin, J.P.5    Cen, P.L.6
  • 17
    • 14244264773 scopus 로고    scopus 로고
    • The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor
    • Klena J, Zhang P, Schwartz O, Hull S, Chen T. 2005. The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor. J Bacteriol 187:1710-1715. http://dx.doi.org/10.1128/JB.187.5.1710-1715.2005.
    • (2005) J Bacteriol , vol.187 , pp. 1710-1715
    • Klena, J.1    Zhang, P.2    Schwartz, O.3    Hull, S.4    Chen, T.5
  • 18
    • 84864801619 scopus 로고    scopus 로고
    • Bio-based production of chemicals, materials and fuels: Corynebacterium glutamicum as versatile cell factory
    • Becker J, Wittmann C. 2012. Bio-based production of chemicals, materials and fuels: Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631-640. http://dx.doi.org/10.1016/j.copbio.2011.11.012.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 631-640
    • Becker, J.1    Wittmann, C.2
  • 19
    • 84939824310 scopus 로고    scopus 로고
    • 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway
    • Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO. 2015. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb Technol 81:1-7. http://dx.doi.org/10.1016/j.enzmictec.2015.07.004.
    • (2015) Enzyme Microb Technol , vol.81 , pp. 1-7
    • Ramzi, A.B.1    Hyeon, J.E.2    Kim, S.W.3    Park, C.4    Han, S.O.5
  • 20
    • 84947429081 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose
    • Yu X, Jin H, Liu W, Wang Q, Qi Q. 2015. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb Cell Fact 14:183. http://dx.doi.org/10.1186/s12934-015-0364-8.
    • (2015) Microb Cell Fact , vol.14 , pp. 183
    • Yu, X.1    Jin, H.2    Liu, W.3    Wang, Q.4    Qi, Q.5
  • 21
    • 84949907830 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid
    • Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z. 2015. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng http://dx.doi.org/10.1002/bit.25886.
    • (2015) Biotechnol Bioeng
    • Feng, L.1    Zhang, Y.2    Fu, J.3    Mao, Y.4    Chen, T.5    Zhao, X.6    Wang, Z.7
  • 22
    • 0035041240 scopus 로고    scopus 로고
    • Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1
    • Niebisch A, Bott M. 2001. Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175:282-294. http://dx.doi.org/10.1007/s002030100262.
    • (2001) Arch Microbiol , vol.175 , pp. 282-294
    • Niebisch, A.1    Bott, M.2
  • 23
    • 84878367693 scopus 로고    scopus 로고
    • Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine
    • Jiang LY, Chen SG, Zhang YY, Liu JZ. 2013. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 13:47. http://dx.doi.org/10.1186/1472-6750-13-47.
    • (2013) BMC Biotechnol , vol.13 , pp. 47
    • Jiang, L.Y.1    Chen, S.G.2    Zhang, Y.Y.3    Liu, J.Z.4
  • 24
    • 79957471219 scopus 로고    scopus 로고
    • Enzymatic assembly of overlapping DNA fragments
    • Gibson DG. 2011. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349-361. http://dx.doi.org/10.1016/B978-0-12-385120-8.00015-2.
    • (2011) Methods Enzymol , vol.498 , pp. 349-361
    • Gibson, D.G.1
  • 25
    • 0141921885 scopus 로고    scopus 로고
    • Fructose-1, 6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme
    • Rittmann D, Schaffer S, Wendisch VF, Sahm H. 2003. Fructose-1, 6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285-292. http://dx.doi.org/10.1007/s00203-003-0588-6.
    • (2003) Arch Microbiol , vol.180 , pp. 285-292
    • Rittmann, D.1    Schaffer, S.2    Wendisch, V.F.3    Sahm, H.4
  • 26
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 27
    • 84885441663 scopus 로고    scopus 로고
    • A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli
    • Li Y, Li M, Zhang X, Yang P, Liang Q, Qi Q. 2013. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour Technol 149:333-340. http://dx.doi.org/10.1016/j.biortech.2013.09.077.
    • (2013) Bioresour Technol , vol.149 , pp. 333-340
    • Li, Y.1    Li, M.2    Zhang, X.3    Yang, P.4    Liang, Q.5    Qi, Q.6
  • 28
    • 0020467359 scopus 로고
    • Analysis of glycine in antiperspirant products by HPLC
    • Chin D, Achari RG. 1982. Analysis of glycine in antiperspirant products by HPLC. J Soc Cosmet Chem 33:359-362.
    • (1982) J Soc Cosmet Chem , vol.33 , pp. 359-362
    • Chin, D.1    Achari, R.G.2
  • 29
    • 84890852797 scopus 로고    scopus 로고
    • Deficiency of succinic dehydrogenase or succinyl-CoA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli
    • (In Chinese.)
    • Pu W, Chen J, Sun C, Chen N, Sun J, Zheng P, Ma Y. 2013. Deficiency of succinic dehydrogenase or succinyl-CoA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli. Sheng Wu Gong Cheng Xue Bao 29:1494-1503. (In Chinese.)
    • (2013) Sheng Wu Gong Cheng Xue Bao , vol.29 , pp. 1494-1503
    • Pu, W.1    Chen, J.2    Sun, C.3    Chen, N.4    Sun, J.5    Zheng, P.6    Ma, Y.7
  • 30
    • 84872409095 scopus 로고    scopus 로고
    • Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway: metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum
    • Kind S, Becker J, Wittmann C. 2013. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway: metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng 15:184-195. http://dx.doi.org/10.1016/j.ymben.2012.07.005.
    • (2013) Metab Eng , vol.15 , pp. 184-195
    • Kind, S.1    Becker, J.2    Wittmann, C.3
  • 32
    • 84857456181 scopus 로고    scopus 로고
    • Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives
    • Yun JY, Lee JE, Yang KM, Cho S, Kim A, Kwon YU, Park JB. 2012. Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives. Bioprocess Biosyst Eng 35:211-216. http://dx.doi.org/10.1007/s00449-011-0594-z.
    • (2012) Bioprocess Biosyst Eng , vol.35 , pp. 211-216
    • Yun, J.Y.1    Lee, J.E.2    Yang, K.M.3    Cho, S.4    Kim, A.5    Kwon, Y.U.6    Park, J.B.7
  • 33
    • 67349234520 scopus 로고    scopus 로고
    • Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus
    • Doo EH, Lee WH, Seo HS, Seo JH, Park JB. 2009. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J Biotechnol 142:164-169. http://dx.doi.org/10.1016/j.jbiotec.2009.04.008.
    • (2009) J Biotechnol , vol.142 , pp. 164-169
    • Doo, E.H.1    Lee, W.H.2    Seo, H.S.3    Seo, J.H.4    Park, J.B.5
  • 34
    • 84861139695 scopus 로고    scopus 로고
    • Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
    • Litsanov B, Brocker M, Bott M. 2012. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78:3325-3337. http://dx.doi.org/10.1128/AEM.07790-11.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 3325-3337
    • Litsanov, B.1    Brocker, M.2    Bott, M.3
  • 35
    • 84877319924 scopus 로고    scopus 로고
    • Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli
    • Lee MJ, Kim HJ, Lee JY, Kwon AS, Jun SY, Kang SH, Kim P. 2013. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J Microbiol Biotechnol 23:668-673. http://dx.doi.org/10.4014/jmb.1302.02022.
    • (2013) J Microbiol Biotechnol , vol.23 , pp. 668-673
    • Lee, M.J.1    Kim, H.J.2    Lee, J.Y.3    Kwon, A.S.4    Jun, S.Y.5    Kang, S.H.6    Kim, P.7
  • 36
    • 0036446947 scopus 로고    scopus 로고
    • Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4.1 hemA gene: in vivo evidence for the presence of two promoters that are both regulated by fnrL
    • Fales L, Nogaj L, Zeilstra-Ryalls J. 2002. Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4.1 hemA gene: in vivo evidence for the presence of two promoters that are both regulated by fnrL. Photosynth Res 74:143-151. http://dx.doi.org/10.1023/A:1020947308227.
    • (2002) Photosynth Res , vol.74 , pp. 143-151
    • Fales, L.1    Nogaj, L.2    Zeilstra-Ryalls, J.3
  • 37
    • 53849135532 scopus 로고    scopus 로고
    • Regulation of the Rhodobacter sphaeroides 2.4.1 hemA gene by PrrA and FnrL
    • Ranson-Olson B, Zeilstra-Ryalls JH. 2008. Regulation of the Rhodobacter sphaeroides 2.4.1 hemA gene by PrrA and FnrL. J Bacteriol 190:6769-6778. http://dx.doi.org/10.1128/JB.00828-08.
    • (2008) J Bacteriol , vol.190 , pp. 6769-6778
    • Ranson-Olson, B.1    Zeilstra-Ryalls, J.H.2
  • 38
    • 79960659551 scopus 로고    scopus 로고
    • Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells
    • Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL. 2011. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286:26424-26430. http://dx.doi.org/10.1074/jbc.M110.215772.
    • (2011) J Biol Chem , vol.286 , pp. 26424-26430
    • Tian, Q.1    Li, T.2    Hou, W.3    Zheng, J.4    Schrum, L.W.5    Bonkovsky, H.L.6
  • 39
    • 84942501965 scopus 로고    scopus 로고
    • Purification and functional characterization of thermostable 5-aminolevulinic acid syn-thases
    • Meng Q, Zhang Y, Ma C, Ma H, Zhao X, Chen T. 2015. Purification and functional characterization of thermostable 5-aminolevulinic acid syn-thases. Biotechnol Lett 37:2247-2253. http://dx.doi.org/10.1007/s10529-015-1903-4.
    • (2015) Biotechnol Lett , vol.37 , pp. 2247-2253
    • Meng, Q.1    Zhang, Y.2    Ma, C.3    Ma, H.4    Zhao, X.5    Chen, T.6
  • 40
    • 78951488255 scopus 로고    scopus 로고
    • Cloning and transcriptional analysis of the gene encoding 5-aminolevulinic acid synthase of the white-rot fungus Phanerochaete sordida YK-624
    • Misumi K, Sugiura T, Yamaguchi S, Mori T, Kamei I, Hirai H, Kawagishi H, Kondo R. 2011. Cloning and transcriptional analysis of the gene encoding 5-aminolevulinic acid synthase of the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 75:178-180. http://dx.doi.org/10.1271/bbb.100674.
    • (2011) Biosci Biotechnol Biochem , vol.75 , pp. 178-180
    • Misumi, K.1    Sugiura, T.2    Yamaguchi, S.3    Mori, T.4    Kamei, I.5    Hirai, H.6    Kawagishi, H.7    Kondo, R.8
  • 41
    • 3142644807 scopus 로고    scopus 로고
    • Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306
    • Choi HP, Hong JW, Rhee KH, Sung HC. 2004. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol Lett 236:175-181. http://dx.doi.org/10.1111/j.1574-6968.2004.tb09644.x.
    • (2004) FEMS Microbiol Lett , vol.236 , pp. 175-181
    • Choi, H.P.1    Hong, J.W.2    Rhee, K.H.3    Sung, H.C.4
  • 42
    • 0028111909 scopus 로고
    • Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity
    • Page MD, Ferguson SJ. 1994. Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity. J Bacteriol 176:5919-5928.
    • (1994) J Bacteriol , vol.176 , pp. 5919-5928
    • Page, M.D.1    Ferguson, S.J.2
  • 43
    • 0032795583 scopus 로고    scopus 로고
    • Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum
    • Choi C, Hong BS, Sung HC, Lee HS, Kim JH. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol Lett 21:551-554. http://dx.doi.org/10.1023/A:1005520007230.
    • (1999) Biotechnol Lett , vol.21 , pp. 551-554
    • Choi, C.1    Hong, B.S.2    Sung, H.C.3    Lee, H.S.4    Kim, J.H.5
  • 45
    • 84906875769 scopus 로고    scopus 로고
    • Microbial production and applications of 5-aminolevulinic acid
    • Liu S, Zhang G, Li X, Zhang J. 2014. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 98:7349-7357. http://dx.doi.org/10.1007/s00253-014-5925-y.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 7349-7357
    • Liu, S.1    Zhang, G.2    Li, X.3    Zhang, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.