-
1
-
-
60149099385
-
Evolution and functions of long noncoding RNAs
-
Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Cell 136:629-641. http://dx.doi.org/10.1016/j.cell.2009.02.006.
-
(2009)
Cell
, vol.136
, pp. 629-641
-
-
Ponting, C.P.1
Oliver, P.L.2
Reik, W.3
-
2
-
-
80053045739
-
Molecular mechanisms of long noncoding RNAs
-
Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904-914. http://dx.doi.org/10.1016/j.molcel.2011.08.018.
-
(2011)
Mol Cell
, vol.43
, pp. 904-914
-
-
Wang, K.C.1
Chang, H.Y.2
-
3
-
-
84879987789
-
LincRNAs: genomics, evolution, and mechanisms
-
Ulitsky I, Bartel DP. 2013. LincRNAs: genomics, evolution, and mechanisms. Cell 154:26-46. http://dx.doi.org/10.1016/j.cell.2013.06.020.
-
(2013)
Cell
, vol.154
, pp. 26-46
-
-
Ulitsky, I.1
Bartel, D.P.2
-
4
-
-
84875200257
-
Long noncoding RNAs: cellular address codes in development and disease
-
Batista PJ, Chang HY. 2013. Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298-1307. http://dx.doi.org/10.1016/j.cell.2013.02.012.
-
(2013)
Cell
, vol.152
, pp. 1298-1307
-
-
Batista, P.J.1
Chang, H.Y.2
-
5
-
-
81355142141
-
Non-coding RNAs in human disease
-
Esteller M. 2011. Non-coding RNAs in human disease. Nat Rev Genet 12:861-874. http://dx.doi.org/10.1038/nrg3074.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 861-874
-
-
Esteller, M.1
-
6
-
-
77957243921
-
Long noncoding RNAs with enhancer-like function in human cells
-
Ørom UA, Derrien Beringer T, Gumireddy M, Gardini K, Bussotti A, Lai G, Zytnicki F, Notredame M, Huang CQ, Guigo R, Shiekhattar R. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46-58. http://dx.doi.org/10.1016/j.cell.2010.09.001.
-
(2010)
Cell
, vol.143
, pp. 46-58
-
-
Ørom, U.A.1
Derrien Beringer, T.2
Gumireddy, M.3
Gardini, K.4
Bussotti, A.5
Lai, G.6
Zytnicki, F.7
Notredame, M.8
Huang, C.Q.9
Guigo, R.10
Shiekhattar, R.11
-
7
-
-
84865379361
-
LncRNA-p21 suppresses target mRNA translation
-
Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. 2012. LncRNA-p21 suppresses target mRNA translation. Mol Cell 47:648-655. http://dx.doi.org/10.1016/j.molcel.2012.06.027.
-
(2012)
Mol Cell
, vol.47
, pp. 648-655
-
-
Yoon, J.H.1
Abdelmohsen, K.2
Srikantan, S.3
Yang, X.4
Martindale, J.L.5
De, S.6
Huarte, M.7
Zhan, M.8
Becker, K.G.9
Gorospe, M.10
-
8
-
-
84920898573
-
7SL RNA represses p53 translation by competing with HuR
-
Abdelmohsen K, Panda AC, Kang MJ, Guo R, Kim J, Grammatikakis I, Yoon JH, Dudekula DB, Noh JH, Yang X, Martindale JL, Gorospe M. 2014. 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res 42:10099-10111. http://dx.doi.org/10.1093/nar/gku686.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 10099-10111
-
-
Abdelmohsen, K.1
Panda, A.C.2
Kang, M.J.3
Guo, R.4
Kim, J.5
Grammatikakis, I.6
Yoon, J.H.7
Dudekula, D.B.8
Noh, J.H.9
Yang, X.10
Martindale, J.L.11
Gorospe, M.12
-
9
-
-
84870479616
-
Long noncoding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay
-
Liu X, Li D, Zhang W, Guo M, Zhan Q. 2012. Long noncoding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31:4415-4427. http://dx.doi.org/10.1038/emboj.2012.292.
-
(2012)
EMBO J
, vol.31
, pp. 4415-4427
-
-
Liu, X.1
Li, D.2
Zhang, W.3
Guo, M.4
Zhan, Q.5
-
10
-
-
70350509805
-
Intestinal mucosal barrier function in health and disease
-
Turner JR. 2009. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799-809. http://dx.doi.org/10.1038/nri2653.
-
(2009)
Nat Rev Immunol
, vol.9
, pp. 799-809
-
-
Turner, J.R.1
-
11
-
-
84905032347
-
Posttranscriptional regulation of intestinal epithelial tight junction barrier by RNA-binding proteins and microRNAs
-
Yang H, Rao JN, Wang JY. 2014. Posttranscriptional regulation of intestinal epithelial tight junction barrier by RNA-binding proteins and microRNAs. Tissue Barriers 2:e28320. http://dx.doi.org/10.4161/tisb.28320.
-
(2014)
Tissue Barriers
, vol.2
, pp. e28320
-
-
Yang, H.1
Rao, J.N.2
Wang, J.Y.3
-
12
-
-
84885603248
-
Intestinal barrier disruption as a cause of mortality in combined radiation and burn injury
-
Carter SR, Zahs A, Palmer JL, Wang L, Ramirez L, Gamelli RL, Kovacs EJ. 2013. Intestinal barrier disruption as a cause of mortality in combined radiation and burn injury. Shock 40:281-289. http://dx.doi.org/10.1097/SHK.0b013e3182a2c5b5.
-
(2013)
Shock
, vol.40
, pp. 281-289
-
-
Carter, S.R.1
Zahs, A.2
Palmer, J.L.3
Wang, L.4
Ramirez, L.5
Gamelli, R.L.6
Kovacs, E.J.7
-
13
-
-
2442619064
-
The tight junction: a multifunctional complex
-
Schneeberger EE, Lynch RD. 2004. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213-C1228. http://dx.doi.org/10.1152/ajpcell.00558.2003.
-
(2004)
Am J Physiol Cell Physiol
, vol.286
, pp. C1213-C1228
-
-
Schneeberger, E.E.1
Lynch, R.D.2
-
14
-
-
84987900174
-
Molecular organization of tricellular tight junctions
-
Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N. 2014. Molecular organization of tricellular tight junctions. Tissue Barriers 2:e28960. http://dx.doi.org/10.4161/tisb.28960.
-
(2014)
Tissue Barriers
, vol.2
, pp. e28960
-
-
Furuse, M.1
Izumi, Y.2
Oda, Y.3
Higashi, T.4
Iwamoto, N.5
-
15
-
-
84855176124
-
E-cadherin/_-catenin complex and the epithelial barrier
-
Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DC, Zheng G. 2011. E-cadherin/_-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011:567305.
-
(2011)
J Biomed Biotechnol
, vol.2011
, pp. 567305
-
-
Tian, X.1
Liu, Z.2
Niu, B.3
Zhang, J.4
Tan, T.K.5
Lee, S.R.6
Zhao, Y.7
Harris, D.C.8
Zheng, G.9
-
16
-
-
84890382630
-
Signaling and mechanical roles of E-cadherin
-
Bhatt T, Rizvi A, Batta SP, Kataria S, Jamora C. 2013. Signaling and mechanical roles of E-cadherin. Cell Commun Adhes 20:189-199. http://dx.doi.org/10.3109/15419061.2013.854778.
-
(2013)
Cell Commun Adhes
, vol.20
, pp. 189-199
-
-
Bhatt, T.1
Rizvi, A.2
Batta, S.P.3
Kataria, S.4
Jamora, C.5
-
17
-
-
84899999955
-
A-kinase anchoring proteins contribute to loss of E-cadherin and bronchial epithelial barrier by cigarette smoke
-
Oldenburger A, Poppinga WJ, Kos F, de Bruin HG, Rijks WF, Heijink IH, Timens W, Meurs H, Maarsingh H, Schmidt M. 2014. A-kinase anchoring proteins contribute to loss of E-cadherin and bronchial epithelial barrier by cigarette smoke. Am J Physiol Cell Physiol 306:C585-C597. http://dx.doi.org/10.1152/ajpcell.00183.2013.
-
(2014)
Am J Physiol Cell Physiol
, vol.306
, pp. C585-C597
-
-
Oldenburger, A.1
Poppinga, W.J.2
Kos, F.3
de Bruin, H.G.4
Rijks, W.F.5
Heijink, I.H.6
Timens, W.7
Meurs, H.8
Maarsingh, H.9
Schmidt, M.10
-
18
-
-
55549114048
-
JunD represses transcription and translation of the tight junction protein zona occludens-1 modulating intestinal epithelial barrier function
-
Chen J, Xiao L, Rao JN, Zou T, Liu L, Bellavance E, Gorospe M, Wang JY. 2008. JunD represses transcription and translation of the tight junction protein zona occludens-1 modulating intestinal epithelial barrier function. Mol Biol Cell 19:3701-3712. http://dx.doi.org/10.1091/mbc.E08-02-0175.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 3701-3712
-
-
Chen, J.1
Xiao, L.2
Rao, J.N.3
Zou, T.4
Liu, L.5
Bellavance, E.6
Gorospe, M.7
Wang, J.Y.8
-
19
-
-
80455129693
-
Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function
-
Yu TX, Wang PY, Rao JN, Zou T, Liu L, Xiao L, Gorospe M, Wang JY. 2011. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res 39:8472-8487. http://dx.doi.org/10.1093/nar/gkr567.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 8472-8487
-
-
Yu, T.X.1
Wang, P.Y.2
Rao, J.N.3
Zou, T.4
Liu, L.5
Xiao, L.6
Gorospe, M.7
Wang, J.Y.8
-
20
-
-
80053581738
-
MicroRNA regulation of intestinal epithelial tight junction permeability
-
Ye D, Guo S, Al-Sadi R, Ma TY. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141:1323-1333. http://dx.doi.org/10.1053/j.gastro.2011.07.005.
-
(2011)
Gastroenterology
, vol.141
, pp. 1323-1333
-
-
Ye, D.1
Guo, S.2
Al-Sadi, R.3
Ma, T.Y.4
-
21
-
-
0029024277
-
Disruption of imprinting caused by deletion of the H19 gene region in mice
-
Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM. 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34-39. http://dx.doi.org/10.1038/375034a0.
-
(1995)
Nature
, vol.375
, pp. 34-39
-
-
Leighton, P.A.1
Ingram, R.S.2
Eggenschwiler, J.3
Efstratiadis, A.4
Tilghman, S.M.5
-
23
-
-
77952700235
-
The H19 locus: role of an imprinted non-coding RNA in growth and development
-
Gabory A, Jammes H, Dandolo L. 2010. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32: 473-480. http://dx.doi.org/10.1002/bies.200900170.
-
(2010)
Bioessays
, vol.32
, pp. 473-480
-
-
Gabory, A.1
Jammes, H.2
Dandolo, L.3
-
24
-
-
80053633503
-
A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript
-
Onyango P, Feinberg AP. 2011. A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc Natl Acad Sci U S A 108:16759-16764. http://dx.doi.org/10.1073/pnas.1110904108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 16759-16764
-
-
Onyango, P.1
Feinberg, A.P.2
-
25
-
-
84930537532
-
Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation
-
Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, Yang Y, Liu N, Zhao X, Santin AD, Taylor H, Huang Y. 2015. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 34:3076-3084. http://dx.doi.org/10.1038/onc.2014.236.
-
(2015)
Oncogene
, vol.34
, pp. 3076-3084
-
-
Yan, L.1
Zhou, J.2
Gao, Y.3
Ghazal, S.4
Lu, L.5
Bellone, S.6
Yang, Y.7
Liu, N.8
Zhao, X.9
Santin, A.D.10
Taylor, H.11
Huang, Y.12
-
26
-
-
84876714385
-
Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression
-
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. 2013. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333:213-221. http://dx.doi.org/10.1016/j.canlet.2013.01.033.
-
(2013)
Cancer Lett
, vol.333
, pp. 213-221
-
-
Luo, M.1
Li, Z.2
Wang, W.3
Zeng, Y.4
Liu, Z.5
Qiu, J.6
-
27
-
-
84906791656
-
lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI
-
Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J. 2014. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281:3766-3775. http://dx.doi.org/10.1111/febs.12902.
-
(2014)
FEBS J
, vol.281
, pp. 3766-3775
-
-
Zhu, M.1
Chen, Q.2
Liu, X.3
Sun, Q.4
Zhao, X.5
Deng, R.6
Wang, Y.7
Huang, J.8
Xu, M.9
Yan, J.10
Yu, J.11
-
28
-
-
84938416193
-
H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis
-
Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS. 2015. H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med 7:996-1003. http://dx.doi.org/10.15252/emmm.201505245.
-
(2015)
EMBO Mol Med
, vol.7
, pp. 996-1003
-
-
Ghazal, S.1
McKinnon, B.2
Zhou, J.3
Mueller, M.4
Men, Y.5
Yang, L.6
Mueller, M.7
Flannery, C.8
Huang, Y.9
Taylor, H.S.10
-
29
-
-
37149033830
-
The H19 non-coding RNA is essential for human tumor growth
-
Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. 2007. The H19 non-coding RNA is essential for human tumor growth. PLoS One 2:e845. http://dx.doi.org/10.1371/journal.pone.0000845.
-
(2007)
PLoS One
, vol.2
, pp. e845
-
-
Matouk, I.J.1
DeGroot, N.2
Mezan, S.3
Ayesh, S.4
Abu-lail, R.5
Hochberg, A.6
Galun, E.7
-
30
-
-
84863219731
-
The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r
-
Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W. 2012. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659-665. http://dx.doi.org/10.1038/ncb2521.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 659-665
-
-
Keniry, A.1
Oxley, D.2
Monnier, P.3
Kyba, M.4
Dandolo, L.5
Smits, G.6
Reik, W.7
-
31
-
-
50449095151
-
The H19 locus acts in vivo as a tumor suppressor
-
Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, Dandolo L. 2008. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A 105: 12417-12422. http://dx.doi.org/10.1073/pnas.0801540105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 12417-12422
-
-
Yoshimizu, T.1
Miroglio, A.2
Ripoche, M.A.3
Gabory, A.4
Vernucci, M.5
Riccio, A.6
Colnot, S.7
Godard, C.8
Terris, B.9
Jammes, H.10
Dandolo, L.11
-
32
-
-
70350138340
-
H19 acts as a trans-regulator of the imprinted gene network controlling growth in mice
-
Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L. 2009. H19 acts as a trans-regulator of the imprinted gene network controlling growth in mice. Development 136:3413-3421. http://dx.doi.org/10.1242/dev.036061.
-
(2009)
Development
, vol.136
, pp. 3413-3421
-
-
Gabory, A.1
Ripoche, M.A.2
Le Digarcher, A.3
Watrin, F.4
Ziyyat, A.5
Forné, T.6
Jammes, H.7
Ainscough, J.F.8
Surani, M.A.9
Journot, L.10
Dandolo, L.11
-
33
-
-
84896812260
-
The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration
-
Dey BK, Pfeifer K, Dutta A. 2014. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491-501. http://dx.doi.org/10.1101/gad.234419.113.
-
(2014)
Genes Dev
, vol.28
, pp. 491-501
-
-
Dey, B.K.1
Pfeifer, K.2
Dutta, A.3
-
34
-
-
84920974266
-
The H19/let-7 doublenegative feedback loop contributes to glucose metabolism in muscle cells
-
Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee HY, Yang L, Mueller M, Zhou XB, Dandolo L, Szendroedi J, Roden M, Flannery C, Taylor H, Carmichael GG, Shulman GI, Huang Y. 2014. The H19/let-7 doublenegative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 42:13799-13811. http://dx.doi.org/10.1093/nar/gku1160.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 13799-13811
-
-
Gao, Y.1
Wu, F.2
Zhou, J.3
Yan, L.4
Jurczak, M.J.5
Lee, H.Y.6
Yang, L.7
Mueller, M.8
Zhou, X.B.9
Dandolo, L.10
Szendroedi, J.11
Roden, M.12
Flannery, C.13
Taylor, H.14
Carmichael, G.G.15
Shulman, G.I.16
Huang, Y.17
-
35
-
-
84885374473
-
The imprinted H19 lncRNA antagonizes let-7 microRNAs
-
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y. 2013. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52: 101-112. http://dx.doi.org/10.1016/j.molcel.2013.08.027.
-
(2013)
Mol Cell
, vol.52
, pp. 101-112
-
-
Kallen, A.N.1
Zhou, X.B.2
Xu, J.3
Qiao, C.4
Ma, J.5
Yan, L.6
Lu, L.7
Liu, C.8
Yi, J.S.9
Zhang, H.10
Min, W.11
Bennett, A.M.12
Gregory, R.I.13
Ding, Y.14
Huang, Y.15
-
36
-
-
84908621202
-
RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway
-
Liu L, Christodoulou-Vafeiadou E, Rao JN, Zou T, Xiao L, Chung HK, Yang H, Gorospe M, Kontoyiannis D, Wang JY. 2014. RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway. Mol Biol Cell 25:3308-3318. http://dx.doi.org/10.1091/mbc.E14-03-0853.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 3308-3318
-
-
Liu, L.1
Christodoulou-Vafeiadou, E.2
Rao, J.N.3
Zou, T.4
Xiao, L.5
Chung, H.K.6
Yang, H.7
Gorospe, M.8
Kontoyiannis, D.9
Wang, J.Y.10
-
37
-
-
84872291506
-
Competitive binding of CUGBP1 and HuR to occludin mRNA controls its translation and modulates epithelial barrier function
-
Yu TX, Rao JN, Zou T, Liu L, Xiao L, Ouyang M, Cao S, Gorospe M, Wang JY. 2013. Competitive binding of CUGBP1 and HuR to occludin mRNA controls its translation and modulates epithelial barrier function. Mol Biol Cell 24:85-99. http://dx.doi.org/10.1091/mbc.E12-07-0531.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 85-99
-
-
Yu, T.X.1
Rao, J.N.2
Zou, T.3
Liu, L.4
Xiao, L.5
Ouyang, M.6
Cao, S.7
Gorospe, M.8
Wang, J.Y.9
-
38
-
-
84902667628
-
Inhibition of Smurf2 translation by miR-322/503 modu-lates TGF-_/Smad2 signaling and intestinal epithelial homeostasis
-
Cao S, Xiao L, Rao JN, Zou T, Liu L, Zhang D, Turner DJ, Gorospe M, Wang JY. 2014. Inhibition of Smurf2 translation by miR-322/503 modu-lates TGF-_/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell 25:1234-1243. http://dx.doi.org/10.1091/mbc.E13-09-0560.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 1234-1243
-
-
Cao, S.1
Xiao, L.2
Rao, J.N.3
Zou, T.4
Liu, L.5
Zhang, D.6
Turner, D.J.7
Gorospe, M.8
Wang, J.Y.9
-
39
-
-
84884782047
-
miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2
-
Xiao L, Rao JN, Zou T, Liu L, Cao S, Martindale JL, Su W, Chung HK, Gorospe M, Wang JY. 2013. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Mol Biol Cell 24: 3038-3046. http://dx.doi.org/10.1091/mbc.E13-05-0287.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 3038-3046
-
-
Xiao, L.1
Rao, J.N.2
Zou, T.3
Liu, L.4
Cao, S.5
Martindale, J.L.6
Su, W.7
Chung, H.K.8
Gorospe, M.9
Wang, J.Y.10
-
40
-
-
84929378589
-
Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal
-
Liu L, Ouyang M, Rao JN, Zou T, Xiao L, Chung HK, Wu J, Donahue JM, Gorospe M, Wang JY. 2015. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Mol Biol Cell 26:1797-1810. http://dx.doi.org/10.1091/mbc.E14-11-1500.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 1797-1810
-
-
Liu, L.1
Ouyang, M.2
Rao, J.N.3
Zou, T.4
Xiao, L.5
Chung, H.K.6
Wu, J.7
Donahue, J.M.8
Gorospe, M.9
Wang, J.Y.10
-
41
-
-
84855402273
-
miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies
-
Cui YH, Xiao L, Rao JN, Zou T, Liu L, Chen Y, Turner DJ, Gorospe M, Wang JY. 2012. miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Mol Biol Cell 23:151-162. http://dx.doi.org/10.1091/mbc.E11-05-0456.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 151-162
-
-
Cui, Y.H.1
Xiao, L.2
Rao, J.N.3
Zou, T.4
Liu, L.5
Chen, Y.6
Turner, D.J.7
Gorospe, M.8
Wang, J.Y.9
-
42
-
-
0142020885
-
Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines
-
Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, Wang JY. 2003. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol 285:C1174-C1187. http://dx.doi.org/10.1152/ajpcell.00015.2003.
-
(2003)
Am J Physiol Cell Physiol
, vol.285
, pp. C1174-C1187
-
-
Guo, X.1
Rao, J.N.2
Liu, L.3
Zou, T.T.4
Turner, D.J.5
Bass, B.L.6
Wang, J.Y.7
-
43
-
-
84950280643
-
Transgenic expression of miR-222 disrupts intestinal epithelial regeneration by targeting multiple genes including Frizzled-7
-
Chung HK, Chen Y, Rao JN, Liu L, Xiao L, Turner DJ, Yang P, Gorospe M, Wang JY. 2015. Transgenic expression of miR-222 disrupts intestinal epithelial regeneration by targeting multiple genes including Frizzled-7. Mol Med 21:676-687. http://dx.doi.org/10.2119/molmed.2015.00147.
-
(2015)
Mol Med
, vol.21
, pp. 676-687
-
-
Chung, H.K.1
Chen, Y.2
Rao, J.N.3
Liu, L.4
Xiao, L.5
Turner, D.J.6
Yang, P.7
Gorospe, M.8
Wang, J.Y.9
-
44
-
-
79954994463
-
Hypoxia-inducible factor-1-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5=-nucleotidase (CD73) and the A2B adenosine receptor
-
Hart ML, Grenz A, Gorzolla IC, Schittenhelm J, Dalton JH, Eltzschig HK. 2011. Hypoxia-inducible factor-1-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5=-nucleotidase (CD73) and the A2B adenosine receptor. J Immunol 186:4367-4374. http://dx.doi.org/10.4049/jimmunol.0903617.
-
(2011)
J Immunol
, vol.186
, pp. 4367-4374
-
-
Hart, M.L.1
Grenz, A.2
Gorzolla, I.C.3
Schittenhelm, J.4
Dalton, J.H.5
Eltzschig, H.K.6
-
45
-
-
0000371335
-
Critical values for Duncan's new multiple range tests
-
Harter JL. 1960. Critical values for Duncan's new multiple range tests. Biometric 16:671-685. http://dx.doi.org/10.2307/2527770.
-
(1960)
Biometric
, vol.16
, pp. 671-685
-
-
Harter, J.L.1
-
46
-
-
84952719301
-
Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn's disease
-
Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, Freyssinet M, Neunlist M, Rolli-Derkinderen M. 2015. Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn's disease. Gastroenterology 150:168-180.
-
(2015)
Gastroenterology
, vol.150
, pp. 168-180
-
-
Pochard, C.1
Coquenlorge, S.2
Jaulin, J.3
Cenac, N.4
Vergnolle, N.5
Meurette, G.6
Freyssinet, M.7
Neunlist, M.8
Rolli-Derkinderen, M.9
-
47
-
-
79959736965
-
Protein kinase C_ phosphorylates occludin and promotes assembly of epithelial tight junctions
-
Jain S, Suzuki T, Seth A, Samak G, Rao R. 2011. Protein kinase C_ phosphorylates occludin and promotes assembly of epithelial tight junctions. Biochem J 437:289-299. http://dx.doi.org/10.1042/BJ20110587.
-
(2011)
Biochem J
, vol.437
, pp. 289-299
-
-
Jain, S.1
Suzuki, T.2
Seth, A.3
Samak, G.4
Rao, R.5
-
48
-
-
84930918026
-
JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells
-
Zou T, Rao JN, Liu L, Xiao L, Chung HK, Li Y, Chen G, Gorospe M, Wang JY. 2015. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. Am J Physiol Cell Physiol 308:C813-C824. http://dx.doi.org/10.1152/ajpcell.00027.2015.
-
(2015)
Am J Physiol Cell Physiol
, vol.308
, pp. C813-C824
-
-
Zou, T.1
Rao, J.N.2
Liu, L.3
Xiao, L.4
Chung, H.K.5
Li, Y.6
Chen, G.7
Gorospe, M.8
Wang, J.Y.9
-
49
-
-
0036174343
-
Elemental and intravenous total parenteral nutrition diet-induced gut barrier failure is intestinal site specific and can be prevented by feeding nonfermentable fiber
-
Mosenthal AC, Xu D, Deitch EA. 2002. Elemental and intravenous total parenteral nutrition diet-induced gut barrier failure is intestinal site specific and can be prevented by feeding nonfermentable fiber. Crit Care Med 30:396-402. http://dx.doi.org/10.1097/00003246-200202000-00022.
-
(2002)
Crit Care Med
, vol.30
, pp. 396-402
-
-
Mosenthal, A.C.1
Xu, D.2
Deitch, E.A.3
-
50
-
-
33847271696
-
The imprinted H19 noncoding RNA is a primary microRNA precursor
-
Cai X, Cullen BR. 2007. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313-316. http://dx.doi.org/10.1261/rna.351707.
-
(2007)
RNA
, vol.13
, pp. 313-316
-
-
Cai, X.1
Cullen, B.R.2
-
51
-
-
33750470266
-
Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth
-
Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L. 2006. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11:711-722. http://dx.doi.org/10.1016/j.devcel.2006.09.003.
-
(2006)
Dev Cell
, vol.11
, pp. 711-722
-
-
Varrault, A.1
Gueydan, C.2
Delalbre, A.3
Bellmann, A.4
Houssami, S.5
Aknin, C.6
Severac, D.7
Chotard, L.8
Kahli, M.9
Le Digarcher, A.10
Pavlidis, P.11
Journot, L.12
-
52
-
-
84890828236
-
H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1
-
Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. 2013. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 110:20693-20698. http://dx.doi.org/10.1073/pnas.1310201110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 20693-20698
-
-
Monnier, P.1
Martinet, C.2
Pontis, J.3
Stancheva, I.4
Ait-Si-Ali, S.5
Dandolo, L.6
-
53
-
-
84899808514
-
Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675
-
Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y. 2014. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 9:e86295. http://dx.doi.org/10.1371/journal.pone.0086295.
-
(2014)
PLoS One
, vol.9
, pp. e86295
-
-
Shi, Y.1
Wang, Y.2
Luan, W.3
Wang, P.4
Tao, T.5
Zhang, J.6
Qian, J.7
Liu, N.8
You, Y.9
-
54
-
-
80052220142
-
Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines
-
Xiao L, Cui YH, Rao JN, Zou T, Liu L, Smith A, Turner DJ, Gorospe M, Wang JY. 2011. Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Mol Biol Cell 22:3055-3069. http://dx.doi.org/10.1091/mbc.E11-01-0069.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 3055-3069
-
-
Xiao, L.1
Cui, Y.H.2
Rao, J.N.3
Zou, T.4
Liu, L.5
Smith, A.6
Turner, D.J.7
Gorospe, M.8
Wang, J.Y.9
-
55
-
-
84886857012
-
miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration
-
Zhuang R, Rao JN, Zou T, Liu L, Xiao L, Cao S, Hansraj NZ, Gorospe M, Wang JY. 2013. miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res 41:7905-7919. http://dx.doi.org/10.1093/nar/gkt565.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7905-7919
-
-
Zhuang, R.1
Rao, J.N.2
Zou, T.3
Liu, L.4
Xiao, L.5
Cao, S.6
Hansraj, N.Z.7
Gorospe, M.8
Wang, J.Y.9
-
57
-
-
79960918737
-
Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability
-
Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M, Jr, Tuschl T, Ohler U, Keene JD. 2011. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327-339. http://dx.doi.org/10.1016/j.molcel.2011.06.007.
-
(2011)
Mol Cell
, vol.43
, pp. 327-339
-
-
Mukherjee, N.1
Corcoran, D.L.2
Nusbaum, J.D.3
Reid, D.W.4
Georgiev, S.5
Hafner, M.6
Ascano, M.7
Tuschl, T.8
Ohler, U.9
Keene, J.D.10
-
58
-
-
84860332384
-
HuR function in disease
-
Srikantan S, Gorospe M. 2012. HuR function in disease. Front Biosci 17:189-205. http://dx.doi.org/10.2741/3921.
-
(2012)
Front Biosci
, vol.17
, pp. 189-205
-
-
Srikantan, S.1
Gorospe, M.2
-
59
-
-
68149165414
-
HuR recruits let-7/RISC to repress c-Myc expression
-
Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. 2009. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743-1748. http://dx.doi.org/10.1101/gad.1812509.
-
(2009)
Genes Dev
, vol.23
, pp. 1743-1748
-
-
Kim, H.H.1
Kuwano, Y.2
Srikantan, S.3
Lee, E.K.4
Martindale, J.L.5
Gorospe, M.6
-
60
-
-
73949111960
-
Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation
-
Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY. 2009. Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol Biol Cell 20:4885-4898. http://dx.doi.org/10.1091/mbc.E09-07-0550.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 4885-4898
-
-
Liu, L.1
Rao, J.N.2
Zou, T.3
Xiao, L.4
Wang, P.Y.5
Turner, D.J.6
Gorospe, M.7
Wang, J.Y.8
-
61
-
-
84872362041
-
Tissue-specific control of brainenriched miR-7 biogenesis
-
Choudhury NR, de Lima Alves F, de Andrés-Aguayo L, Graf T, Cáceres JF, Rappsilber J, Michlewski G. 2013. Tissue-specific control of brainenriched miR-7 biogenesis. Genes Dev 27:24-38. http://dx.doi.org/10.1101/gad.199190.112.
-
(2013)
Genes Dev
, vol.27
, pp. 24-38
-
-
Choudhury, N.R.1
de Lima Alves, F.2
de Andrés-Aguayo, L.3
Graf, T.4
Cáceres, J.F.5
Rappsilber, J.6
Michlewski, G.7
-
62
-
-
84952838005
-
CUGBP1 and HuR regulate E-cadherin translation by altering recruitment of E-cadherin mRNA to processing bodies and modulate epithelial barrier function
-
Yu TX, Gu BL, Yan JK, Zhu J, Yan WH, Chen J, Qian LX, Cai W. 2016. CUGBP1 and HuR regulate E-cadherin translation by altering recruitment of E-cadherin mRNA to processing bodies and modulate epithelial barrier function. Am J Physiol Cell Physiol 310:C54-C65.
-
(2016)
Am J Physiol Cell Physiol
, vol.310
, pp. C54-C65
-
-
Yu, T.X.1
Gu, B.L.2
Yan, J.K.3
Zhu, J.4
Yan, W.H.5
Chen, J.6
Qian, L.X.7
Cai, W.8
-
63
-
-
84958668008
-
Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins
-
Xiao L, Rao JN, Cao S, Liu L, Chung HK, Zhang Y, Zhang J, Liu Y, Gorospe M, Wang JY. 2016. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Mol Biol Cell 27:617-626.
-
(2016)
Mol Biol Cell
, vol.27
, pp. 617-626
-
-
Xiao, L.1
Rao, J.N.2
Cao, S.3
Liu, L.4
Chung, H.K.5
Zhang, Y.6
Zhang, J.7
Liu, Y.8
Gorospe, M.9
Wang, J.Y.10
-
64
-
-
78649232527
-
Early gut barrier dysfunction in patients with severe acute pancreatitis: attenuated by continuous blood purification treatment
-
Zhang J, Yuan C, Hua G, Tong R, Luo X, Ying Z. 2010. Early gut barrier dysfunction in patients with severe acute pancreatitis: attenuated by continuous blood purification treatment. Int J Artif Organs 33:706-715.
-
(2010)
Int J Artif Organs
, vol.33
, pp. 706-715
-
-
Zhang, J.1
Yuan, C.2
Hua, G.3
Tong, R.4
Luo, X.5
Ying, Z.6
|