메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages 111-119

Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

Author keywords

Cis,cis Muconate; Lignin valorization; Muconic acid; Protocatechuate decarboxylase; Pseudomonas Putida KT2440

Indexed keywords

AROMATIC COMPOUND; CARBOXYLYASE; CATECHOL; DISSOLVED OXYGEN; GLUCOSE; LIGNIN; MUCONIC ACID; PROTOCATECHUIC ACID;

EID: 84964949918     PISSN: None     EISSN: 22140301     Source Type: Journal    
DOI: 10.1016/j.meteno.2016.04.002     Document Type: Article
Times cited : (192)

References (46)
  • 3
    • 84895827954 scopus 로고    scopus 로고
    • Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites
    • Borujeni A.E., Channarasappa A.S., Salis H.M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids 2013, 10.1093/nar/gkt1139/-/DC1.
    • (2013) Nucleic Acids
    • Borujeni, A.E.1    Channarasappa, A.S.2    Salis, H.M.3
  • 4
    • 84878639396 scopus 로고    scopus 로고
    • The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress
    • Chavarría M., Nikel P.I., Pérez-Pantoja D., de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ. Microbiol. 2013, 15:1772-1785. 10.1111/1462-2920.12069.
    • (2013) Environ. Microbiol. , vol.15 , pp. 1772-1785
    • Chavarría, M.1    Nikel, P.I.2    Pérez-Pantoja, D.3    de Lorenzo, V.4
  • 5
    • 32244448730 scopus 로고    scopus 로고
    • A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation
    • Choi K.-H., Kumar A., Schweizer H.P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 2006, 64:391-397. 10.1016/j.mimet.2005.06.001.
    • (2006) J. Microbiol. Methods , vol.64 , pp. 391-397
    • Choi, K.-H.1    Kumar, A.2    Schweizer, H.P.3
  • 6
    • 0032877705 scopus 로고    scopus 로고
    • Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7
    • Chow K.T., Pope M.K., Davies J. Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7. Microbiology 1999, 145:2393-2403.
    • (1999) Microbiology , vol.145 , pp. 2393-2403
    • Chow, K.T.1    Pope, M.K.2    Davies, J.3
  • 7
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran K.A., Leavitt J.M., Karim A.S., Alper H.S. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 2013, 15:55-66. 10.1016/j.ymben.2012.10.003.
    • (2013) Metab. Eng. , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 8
    • 34447522100 scopus 로고    scopus 로고
    • Convergent peripheral pathways catalyze initial glucose catabolism in pseudomonas putida: genomic and flux analysis
    • del Castillo T., Ramos J.L., Rodriguez-Herva J.J., Fuhrer T., Sauer U., Duque E. Convergent peripheral pathways catalyze initial glucose catabolism in pseudomonas putida: genomic and flux analysis. J. Bacteriol. 2007, 189:5142-5152. 10.1128/JB.00203-07.
    • (2007) J. Bacteriol. , vol.189 , pp. 5142-5152
    • del Castillo, T.1    Ramos, J.L.2    Rodriguez-Herva, J.J.3    Fuhrer, T.4    Sauer, U.5    Duque, E.6
  • 9
    • 84941299813 scopus 로고    scopus 로고
    • Biological production of adipic acid from renewable substrates: Current and future methods
    • Deng Y., Ma L., Mao Y. Biological production of adipic acid from renewable substrates: Current and future methods. Biochem. Eng. J. 2016, 105:16-26. 10.1016/j.bej.2015.08.015.
    • (2016) Biochem. Eng. J. , vol.105 , pp. 16-26
    • Deng, Y.1    Ma, L.2    Mao, Y.3
  • 10
    • 0028286911 scopus 로고
    • Environmentally compatible synthesis of adipic acid from D-glucose
    • Draths K.M., Frost J.W. Environmentally compatible synthesis of adipic acid from D-glucose. J. Am. Chem. Soc. 1994, 116:399-400.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 399-400
    • Draths, K.M.1    Frost, J.W.2
  • 11
    • 56749146311 scopus 로고    scopus 로고
    • The Missing Link in Petrobactin Biosynthesis: asbF Encodes a (-)-3-Dehydroshikimate Dehydratase
    • Fox, D.T., Hotta, K., Kim, C.-Y., Koppisch, A.T., 2008. The Missing Link in Petrobactin Biosynthesis: asbF Encodes a (-)-3-Dehydroshikimate Dehydratase. Biochemistry 47, 12251-12253. http://dx.doi.org/:10.1021/bi801876q.
    • (2008) Biochemistry , vol.47 , pp. 12251-12253
    • Fox, D.T.1    Hotta, K.2    Kim, C.-Y.3    Koppisch, A.T.4
  • 12
    • 0029795374 scopus 로고    scopus 로고
    • The beta-ketoadipate pathway and the biology of self-identity
    • Harwood C.S., Parales R.E. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 1996, 50:553-590. 10.1146/annurev.micro.50.1.553.
    • (1996) Annu. Rev. Microbiol. , vol.50 , pp. 553-590
    • Harwood, C.S.1    Parales, R.E.2
  • 13
    • 0029891655 scopus 로고    scopus 로고
    • Purification and characterization of an oxygen-sensitive, reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum
    • He Z., Wiegel J. Purification and characterization of an oxygen-sensitive, reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J. Bacteriol. 1996, 178:3539-3543.
    • (1996) J. Bacteriol. , vol.178 , pp. 3539-3543
    • He, Z.1    Wiegel, J.2
  • 14
    • 77649267203 scopus 로고    scopus 로고
    • A Genomic View of the Catabolism of Aromatic Compounds in Pseudomonas
    • in: Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg, Berlin, Heidelberg
    • Jiménez, J.I., Nogales, J., García, J.L., Díaz, E., 2010. A Genomic View of the Catabolism of Aromatic Compounds in Pseudomonas, in: Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1297-1325. doi:10.1007/978-3-540-77587-4_91.
    • (2010) , pp. 1297-1325
    • Jiménez, J.I.1    Nogales, J.2    García, J.L.3    Díaz, E.4
  • 15
    • 0036933805 scopus 로고    scopus 로고
    • Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440
    • Jiménez J.I., Miñambres B., García J.L., Díaz E. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol. 2002, 4:824-841.
    • (2002) Environ. Microbiol. , vol.4 , pp. 824-841
    • Jiménez, J.I.1    Miñambres, B.2    García, J.L.3    Díaz, E.4
  • 16
    • 84930198715 scopus 로고    scopus 로고
    • Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin
    • Johnson C.W., Beckham G.T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab. Eng. 2015, 28:240-247. 10.1016/j.ymben.2015.01.005.
    • (2015) Metab. Eng. , vol.28 , pp. 240-247
    • Johnson, C.W.1    Beckham, G.T.2
  • 17
    • 84929943339 scopus 로고    scopus 로고
    • Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid
    • Jung H.-M., Jung M.-Y., Oh M.-K. Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Appl. Microbiol. Biotechnol. 2015, 10.1007/s00253-015-6442-3.
    • (2015) Appl. Microbiol. Biotechnol.
    • Jung, H.-M.1    Jung, M.-Y.2    Oh, M.-K.3
  • 20
    • 84960155176 scopus 로고    scopus 로고
    • Base-catalyzed depolymerization of biorefinery lignins
    • Katahira R., Mittal A., McKinney K., Chen X. Base-catalyzed depolymerization of biorefinery lignins. ACS Sustain Chem. Eng. 2016, 5:b01451. 10.1021/acssuschemeng.5b01451.
    • (2016) ACS Sustain Chem. Eng. , vol.5 , pp. b01451
    • Katahira, R.1    Mittal, A.2    McKinney, K.3    Chen, X.4
  • 22
    • 84928166783 scopus 로고    scopus 로고
    • Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-polyprenylbenzoic Acid Decarboxylase
    • Lin, F., Ferguson, K.L., Boyer, D.R., Lin, X.N., Marsh, E.N.G., 2015. Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-polyprenylbenzoic Acid Decarboxylase. ACS Chem. Biol. 10, 1137-1144. doi:10.1021/cb5008103.
    • (2015) ACS Chem. Biol. , vol.10 , pp. 1137-1144
    • Lin, F.1    Ferguson, K.L.2    Boyer, D.R.3    Lin, X.N.4    Marsh, E.N.G.5
  • 24
    • 84955169464 scopus 로고    scopus 로고
    • Production of diethyl terephthalate from biomass-derived muconic acid
    • Lu R., Lu F., Chen J., Yu W., Huang Q., Zhang J., Xu J. Production of diethyl terephthalate from biomass-derived muconic acid. Angew. Chem. Int. Ed. 2015, 55:249-253. 10.1002/anie.201509149.
    • (2015) Angew. Chem. Int. Ed. , vol.55 , pp. 249-253
    • Lu, R.1    Lu, F.2    Chen, J.3    Yu, W.4    Huang, Q.5    Zhang, J.6    Xu, J.7
  • 25
    • 23244446480 scopus 로고    scopus 로고
    • Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases
    • Lupa B., Lyon D., Gibbs M.D., Reeves R.A., Wiegel J. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 2005, 86:342-351. 10.1016/j.ygeno.2005.05.002.
    • (2005) Genomics , vol.86 , pp. 342-351
    • Lupa, B.1    Lyon, D.2    Gibbs, M.D.3    Reeves, R.A.4    Wiegel, J.5
  • 26
    • 39749148299 scopus 로고    scopus 로고
    • Properties of the reversible nonoxidative vanillate /4-hydroxybenzoate decarboxylase from Bacillus subtilis
    • Lupa B., Lyon D., Shaw L.N., Sieprawska-Lupa M., Wiegel J. Properties of the reversible nonoxidative vanillate /4-hydroxybenzoate decarboxylase from Bacillus subtilis. Can. J. Microbiol. 2008, 54:75-81. 10.1139/W07-113.
    • (2008) Can. J. Microbiol. , vol.54 , pp. 75-81
    • Lupa, B.1    Lyon, D.2    Shaw, L.N.3    Sieprawska-Lupa, M.4    Wiegel, J.5
  • 27
    • 58849089274 scopus 로고    scopus 로고
    • Development of a broad-host-range sacB-based vector for unmarked allelic exchange
    • Marx C.J. Development of a broad-host-range sacB-based vector for unmarked allelic exchange. BMC Res. Notes 2008, 1:1. 10.1186/1756-0500-1-1.
    • (2008) BMC Res. Notes , vol.1 , pp. 1
    • Marx, C.J.1
  • 28
    • 33745863484 scopus 로고    scopus 로고
    • Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240
    • Matsui T., Yoshida T., Hayashi T., Nagasawa T. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch. Microbiol. 2006, 186:21-29. 10.1007/s00203-006-0117-5.
    • (2006) Arch. Microbiol. , vol.186 , pp. 21-29
    • Matsui, T.1    Yoshida, T.2    Hayashi, T.3    Nagasawa, T.4
  • 29
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing From biofuels and chemicals, to biocatalysis and bioremediation
    • Nicolaou S.A., Gaida S.M., Papoutsakis E.T. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing From biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 2010, 12:307-331. 10.1016/j.ymben.2010.03.004.
    • (2010) Metab. Eng. , vol.12 , pp. 307-331
    • Nicolaou, S.A.1    Gaida, S.M.2    Papoutsakis, E.T.3
  • 30
    • 84944910018 scopus 로고    scopus 로고
    • Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner-doudoroff, embden-meyerhof-parnas, and pentose phosphate pathways
    • Nikel P.I., Chavarría M., Fuhrer T., Sauer U., de Lorenzo V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner-doudoroff, embden-meyerhof-parnas, and pentose phosphate pathways. J. Biol. Chem. 2015, 290:25920-25932. 10.1074/jbc.M115.687749.
    • (2015) J. Biol. Chem. , vol.290 , pp. 25920-25932
    • Nikel, P.I.1    Chavarría, M.2    Fuhrer, T.3    Sauer, U.4    de Lorenzo, V.5
  • 31
    • 84898874640 scopus 로고    scopus 로고
    • Biotechnological domestication of pseudomonads using synthetic biology
    • Nikel P.I., Martínez-García E., de Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 2014, 12:368-379. 10.1038/nrmicro3253.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 368-379
    • Nikel, P.I.1    Martínez-García, E.2    de Lorenzo, V.3
  • 32
    • 0036010273 scopus 로고    scopus 로고
    • Benzene-free synthesis of adipic acid
    • Niu W., Draths K.M., Frost J.W. Benzene-free synthesis of adipic acid. Biotechnol. Prog. 2002, 18:201-211. 10.1021/bp010179x.
    • (2002) Biotechnol. Prog. , vol.18 , pp. 201-211
    • Niu, W.1    Draths, K.M.2    Frost, J.W.3
  • 33
    • 0014027888 scopus 로고
    • The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida
    • Ornston L.N., Stanier R.Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J. Biol. Chem. 1966, 241:3776-3786.
    • (1966) J. Biol. Chem. , vol.241 , pp. 3776-3786
    • Ornston, L.N.1    Stanier, R.Y.2
  • 35
    • 84881028723 scopus 로고    scopus 로고
    • Toward biotechnological production of adipic acid and precursors from biorenewables
    • Polen T., Spelberg M., Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J. Biotechnol. 2013, 167:75-84. 10.1016/j.jbiotec.2012.07.008.
    • (2013) J. Biotechnol. , vol.167 , pp. 75-84
    • Polen, T.1    Spelberg, M.2    Bott, M.3
  • 36
    • 77955132055 scopus 로고    scopus 로고
    • Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment
    • Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 2010, 1-27. 10.1111/j.1574-6976.2010.00218.x.
    • (2010) FEMS Microbiol. Rev. , pp. 1-27
    • Rojo, F.1
  • 37
    • 70349964350 scopus 로고    scopus 로고
    • Automated design of synthetic ribosome binding sites to control protein expression
    • Salis H.M., Mirsky E.A., Voigt C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Publ. Group 2009, 27:946-950. 10.1038/nbt.1568.
    • (2009) Nat. Publ. Group , vol.27 , pp. 946-950
    • Salis, H.M.1    Mirsky, E.A.2    Voigt, C.A.3
  • 38
    • 84942905711 scopus 로고    scopus 로고
    • Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria
    • Salvachúa D., Karp E.M., Nimlos C.T., Vardon D.R., Beckham G.T. Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 2015, 17:4951-4967. 10.1039/C5GC01165E.
    • (2015) Green Chem. , vol.17 , pp. 4951-4967
    • Salvachúa, D.1    Karp, E.M.2    Nimlos, C.T.3    Vardon, D.R.4    Beckham, G.T.5
  • 39
    • 84909954184 scopus 로고    scopus 로고
    • Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds
    • Sonoki T., Morooka M., Sakamoto K., Otsuka Y., Nakamura M., Jellison J., Goodell B. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 2014, 192:71-77. 10.1016/j.jbiotec.2014.10.027.
    • (2014) J. Biotechnol. , vol.192 , pp. 71-77
    • Sonoki, T.1    Morooka, M.2    Sakamoto, K.3    Otsuka, Y.4    Nakamura, M.5    Jellison, J.6    Goodell, B.7
  • 40
    • 84878078206 scopus 로고    scopus 로고
    • Emerging catalytic processes for the production of adipic acid
    • Van de Vyver S., Román-Leshkov Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 2013, 3:1465-1479. 10.1039/C3CY20728E.
    • (2013) Catal. Sci. Technol. , vol.3 , pp. 1465-1479
    • Van de Vyver, S.1    Román-Leshkov, Y.2
  • 43
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
    • Weber C., Brückner C., Weinreb S., Lehr C., Essl C., Boles E. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78:8421-8430. 10.1128/AEM.01983-12.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8421-8430
    • Weber, C.1    Brückner, C.2    Weinreb, S.3    Lehr, C.4    Essl, C.5    Boles, E.6
  • 45
    • 84900526615 scopus 로고    scopus 로고
    • Biotechnological production of muconic acid: current status and future prospects
    • Xie N.-Z., Liang H., Huang R.-B., Xu P. Biotechnological production of muconic acid: current status and future prospects. Biotechnol. Adv. 2014, 32:615-622. 10.1016/j.biotechadv.2014.04.001.
    • (2014) Biotechnol. Adv. , vol.32 , pp. 615-622
    • Xie, N.-Z.1    Liang, H.2    Huang, R.-B.3    Xu, P.4
  • 46
    • 77952243715 scopus 로고    scopus 로고
    • Regioselective carboxylation of catechol by 3,4-dihydroxybenzoate decarboxylase of Enterobacter cloacae P
    • Yoshida T., Inami Y., Matsui T., Nagasawa T. Regioselective carboxylation of catechol by 3,4-dihydroxybenzoate decarboxylase of Enterobacter cloacae P. Biotechnol. Lett. 2010, 32:701-705. 10.1007/s10529-010-0210-3.
    • (2010) Biotechnol. Lett. , vol.32 , pp. 701-705
    • Yoshida, T.1    Inami, Y.2    Matsui, T.3    Nagasawa, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.