메뉴 건너뛰기




Volumn , Issue , 2006, Pages 409-427

Computational assemblage of ordinary differential equations for chlorophyll-a using a lake process equation library and measured data of Lake Kasumigaura

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79551512215     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/3-540-28426-5_20     Document Type: Chapter
Times cited : (4)

References (21)
  • 2
    • 0020376319 scopus 로고
    • Problems of application of the ecological model SALMO to lakes and reservoirs having various trophic states
    • Benndorf J, Recknagel F (1982) Problems of application of the ecological model SALMO to lakes and reservoirs having various trophic states. Ecological Modelling 17, 129-145
    • (1982) Ecological Modelling , vol.17 , pp. 129-145
    • Benndorf, J.1    Recknagel, F.2
  • 3
    • 31444434933 scopus 로고    scopus 로고
    • Evolving rules for the prediction and explanation of blue-green algal succession in lakes by evolutionary computation
    • Recknagel F (ed.) Springer-Verlag Berlin, Heidelberg, New York
    • Bobbin J, Recknagel F (2003) Evolving rules for the prediction and explanation of blue-green algal succession in lakes by evolutionary computation. In: Recknagel F (ed.) (2003) Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation. Springer-Verlag Berlin, Heidelberg, New York, 291-310
    • (2003) 2003 Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation , pp. 291-310
    • Bobbin, J.1    Recknagel, F.2
  • 6
    • 0347567451 scopus 로고    scopus 로고
    • Learning population dynamics models from data and domain knowledge
    • Dzeroski S, Todorovski L (2003) Learning population dynamics models from data and domain knowledge. Ecological Modelling, 170(2-3): 129-140.
    • (2003) Ecological Modelling , vol.170 , Issue.2-3 , pp. 129-140
    • Dzeroski, S.1    Todorovski, L.2
  • 8
    • 0003518246 scopus 로고
    • Ph.D. Thesis, FGG, Ljubljana; Royal Danish School of Pharmacy, Copenhagen, Ljubljana, Copenhagen
    • Kompare B (1995) The Use of Artificial Intelligence in Ecological Modelling. Ph.D. Thesis, FGG, Ljubljana; Royal Danish School of Pharmacy, Copenhagen, Ljubljana, Copenhagen
    • (1995) The Use of Artificial Intelligence in Ecological Modelling
    • Kompare, B.1
  • 11
    • 0346591063 scopus 로고    scopus 로고
    • Comparative application of artificial neural networks and genetic algorithms for multivariate time-series modelling of algal blooms in freshwater lakes
    • Recknagel F, Bobbin J, Whigham P, Wilson H (2002) Comparative application of artificial neural networks and genetic algorithms for multivariate time-series modelling of algal blooms in freshwater lakes. Journal of Hydroinformatics 4, 2, 125-134
    • (2002) Journal of Hydroinformatics , vol.4 , Issue.2 , pp. 125-134
    • Recknagel, F.1    Bobbin, J.2    Whigham, P.3    Wilson, H.4
  • 12
    • 0001491662 scopus 로고    scopus 로고
    • Modelling and prediction of phyto-and zooplankton dynamics in Lake Kasumigaura by artificial neural networks
    • Recknagel F, Fukushima T, Hanazato T, Takamura N, Wilson H (1998) Modelling and prediction of phyto-and zooplankton dynamics in Lake Kasumigaura by artificial neural networks. Lakes & Reservoirs 3, 123-133
    • (1998) Lakes & Reservoirs , vol.3 , pp. 123-133
    • Recknagel, F.1    Fukushima, T.2    Hanazato, T.3    Takamura, N.4    Wilson, H.5
  • 13
    • 0030809170 scopus 로고    scopus 로고
    • ANNA-Artificial Neural Network model predicting species abundance and succession of blue-green Algae
    • Recknagel F (1997) ANNA-Artificial Neural Network model predicting species abundance and succession of blue-green Algae. Hydrobiologia, 349, 47-57
    • (1997) Hydrobiologia , vol.349 , pp. 47-57
    • Recknagel, F.1
  • 14
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F, French M, Harkonen P, Yabunaka K (1997) Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling 96,1-3,11-28
    • (1997) Ecological Modelling , vol.96 , Issue.1-3 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.4
  • 15
    • 0000541468 scopus 로고
    • Validation of the ecological simulation model SALMO
    • Recknagel F,. Benndorf J (1982) Validation of the ecological simulation model SALMO. Int. Revue ges. Hydrobiol. 67, 1, 113-125
    • (1982) Int. Revue Ges. Hydrobiol. , vol.67 , Issue.1 , pp. 113-125
    • Recknagel, F.1    Benndorf, J.2
  • 20
    • 0035057610 scopus 로고    scopus 로고
    • Use of artificial neural networks in the prediction of algal blooms
    • Wei B, Sugiura N, Maekawa T (2001) Use of artificial neural networks in the prediction of algal blooms. Water Research, 35(8): 2022-2028
    • (2001) Water Research , vol.35 , Issue.8 , pp. 2022-2028
    • Wei, B.1    Sugiura, N.2    Maekawa, T.3
  • 21
    • 0035669859 scopus 로고    scopus 로고
    • Predicting chlorophyll-A in freshwater lakes by hybridising process-based models and genetic algorithms
    • Whigham P, Recknagel F (2001) Predicting Chlorophyll-a in Freshwater Lakes by Hybridising Process-Based Models and Genetic Algorithms. Ecol. Modelling 146,1-3,243-251
    • (2001) Ecol. Modelling , vol.146 , Issue.1-3 , pp. 243-251
    • Whigham, P.1    Recknagel, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.