메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 892-897

Inducing hierarchical process models in dynamic domains

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINT THEORY; TIME SERIES ANALYSIS;

EID: 29344439679     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (15)
  • 1
    • 0141975308 scopus 로고    scopus 로고
    • A coupled ocean-ecosystem model of the Ross Sea. part 2: Iron regulation of phytoplankton taxonomic variability and primary production
    • Arrigo, K.; Worthen, D.; and Robinson, D. 2003. A coupled ocean-ecosystem model of the Ross Sea. part 2: Iron regulation of phytoplankton taxonomic variability and primary production. Journal of Geophysical Research 108(C7):3231.
    • (2003) Journal of Geophysical Research , vol.108 , Issue.C7 , pp. 3231
    • Arrigo, K.1    Worthen, D.2    Robinson, D.3
  • 3
    • 0035575450 scopus 로고    scopus 로고
    • Reasoning about nonlinear system identification
    • Bradley, E.; Easley, M.; and Stolle, R. 2001. Reasoning about nonlinear system identification. Artificial Intelligence 133:139-188.
    • (2001) Artificial Intelligence , vol.133 , pp. 139-188
    • Bradley, E.1    Easley, M.2    Stolle, R.3
  • 4
    • 0027557059 scopus 로고
    • Algorithm 717: Subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models
    • Bunch, D.; Gay, D.; and Welsch, R. 1993. Algorithm 717: Subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models. ACM Transactions on Mathematical Software 19:109-130.
    • (1993) ACM Transactions on Mathematical Software , vol.19 , pp. 109-130
    • Bunch, D.1    Gay, D.2    Welsch, R.3
  • 6
    • 0000017646 scopus 로고
    • Explanation-based learning:An alternative view
    • DeJong, G. F., and Mooney, R. J. 1986. Explanation-based learning:An alternative view.Machine Learning 1:145-176.
    • (1986) Machine Learning , vol.1 , pp. 145-176
    • DeJong, G.F.1    Mooney, R.J.2
  • 7
    • 0026244420 scopus 로고
    • Compositional modeling: Finding the right model for the job
    • Falkenhainer, B., and Forbus, K. D. 1991. Compositional modeling: Finding the right model for the job. Artificial Intelligence 51:95-143.
    • (1991) Artificial Intelligence , vol.51 , pp. 95-143
    • Falkenhainer, B.1    Forbus, K.D.2
  • 8
    • 0021613150 scopus 로고
    • Qualitative process theory
    • Forbus, K. D. 1984. Qualitative process theory. Artificial Intelligence 24:85-168.
    • (1984) Artificial Intelligence , vol.24 , pp. 85-168
    • Forbus, K.D.1
  • 9
    • 0034702751 scopus 로고    scopus 로고
    • Testing for predator dependence in predator-prey dynamics: A non-parametric approach
    • Jost, C., and Ellner, S. 2000. Testing for predator dependence in predator-prey dynamics: A non-parametric approach. Proceedings of the Royal Society of London B 267:1611-1620.
    • (2000) Proceedings of the Royal Society of London B , vol.267 , pp. 1611-1620
    • Jost, C.1    Ellner, S.2
  • 14
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R., and Zipser, D. 1989. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1:270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.