메뉴 건너뛰기




Volumn 42, Issue 22, 2015, Pages 8484-8496

Predicting long-term population dynamics with bagging and boosting of process-based models

Author keywords

Bagging; Boosting; Ensembles; Machine learning; Population dynamics; Predictive modeling; Process based modeling

Indexed keywords

AQUATIC ECOSYSTEMS; ARTIFICIAL INTELLIGENCE; DYNAMICS; FORECASTING; LEARNING SYSTEMS; OBJECT ORIENTED PROGRAMMING; POPULATION DYNAMICS;

EID: 84940461850     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.07.004     Document Type: Article
Times cited : (25)

References (41)
  • 1
    • 79551512215 scopus 로고    scopus 로고
    • Computational assemblage of ordinary differential equations for chlorophyll-A using a lake process equation library and measured data of Lake Kasumigaura
    • F. Recknagel, Springer
    • Atanasova N., Recknagel F., Todorovski L., Džeroski S., and Kompare B. Computational assemblage of ordinary differential equations for chlorophyll-a using a lake process equation library and measured data of Lake Kasumigaura F. Recknagel, Ecological Informatics 2006 Springer 409 427
    • (2006) Ecological Informatics , pp. 409-427
    • Atanasova, N.1    Recknagel, F.2    Todorovski, L.3    Džeroski, S.4    Kompare, B.5
  • 2
    • 33644698096 scopus 로고    scopus 로고
    • Constructing a library of domain knowledge for automated modelling of aquatic ecosystems
    • Atanasova N., Todorovski L., Džeroski S., and Kompare B. Constructing a library of domain knowledge for automated modelling of aquatic ecosystems Ecological Modelling 194 13 2006 14 36
    • (2006) Ecological Modelling , vol.194 , Issue.13 , pp. 14-36
    • Atanasova, N.1    Todorovski, L.2    Džeroski, S.3    Kompare, B.4
  • 3
    • 33644681737 scopus 로고    scopus 로고
    • Automated modelling of a food web in Lake Bled using measured data and a library of domain knowledge
    • Atanasova N., Todorovski L., Džeroski S., Remec R., Recknagel F., and Kompare B. Automated modelling of a food web in Lake Bled using measured data and a library of domain knowledge Ecological Modelling 194 1-3 2006 37 48
    • (2006) Ecological Modelling , vol.194 , Issue.1-3 , pp. 37-48
    • Atanasova, N.1    Todorovski, L.2    Džeroski, S.3    Remec, R.4    Recknagel, F.5    Kompare, B.6
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests Machine Learning 45 1 2001 5 32 10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 84866040933 scopus 로고    scopus 로고
    • The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems
    • Čerepnalkoski D., Taškova K., Todorovski L., Atanasova N., and Džeroski S. The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems Ecological Modelling 245 2012 136 165
    • (2012) Ecological Modelling , vol.245 , pp. 136-165
    • Čerepnalkoski, D.1    Taškova, K.2    Todorovski, L.3    Atanasova, N.4    Džeroski, S.5
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 84871021349 scopus 로고    scopus 로고
    • Effects of changes in the driving forces on water quality and plankton dynamics in three Swiss lakes long-term simulations with BELAMO
    • Dietzel A., Mieleitner J., Kardaetz S., and Reichert P. Effects of changes in the driving forces on water quality and plankton dynamics in three Swiss lakes long-term simulations with BELAMO Freshwater Biology 58 1 2013 10 35 10.1111/fwb.12031
    • (2013) Freshwater Biology , vol.58 , Issue.1 , pp. 10-35
    • Dietzel, A.1    Mieleitner, J.2    Kardaetz, S.3    Reichert, P.4
  • 14
    • 0347567451 scopus 로고    scopus 로고
    • Learning population dynamics models from data and domain knowledge
    • Džeroski S., and Todorovski L. Learning population dynamics models from data and domain knowledge Ecological Modelling 170 2003 129 140
    • (2003) Ecological Modelling , vol.170 , pp. 129-140
    • Džeroski, S.1    Todorovski, L.2
  • 16
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1 1997 119 139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings The Annals of Mathematical Statistics 11 1 1940 86 92 10.2307/2235971
    • (1940) The Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 19
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • Iman R.L., and Davenport J.M. Approximations of the critical region of the Friedman statistic Communications in Statistics - Theory and Methods 9 6 1980 571 595 10.1080/03610928008827904
    • (1980) Communications in Statistics - Theory and Methods , vol.9 , Issue.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 20
    • 84940461728 scopus 로고    scopus 로고
    • Optbpplanner: Automatic generation of optimized business process enactment plans
    • H. Linger, J. Fisher, A. Barnden, C. Barry, M. Lang, C. Schneider, Springer US
    • Jiménez A., Barba I., del Valle C., and Weber B. Optbpplanner: automatic generation of optimized business process enactment plans H. Linger, J. Fisher, A. Barnden, C. Barry, M. Lang, C. Schneider, Building sustainable information systems 2013 Springer US 429 442 10.1007/978-1-4614-7540-8-33
    • (2013) Building Sustainable Information Systems , pp. 429-442
    • Jiménez, A.1    Barba, I.2    Del Valle, C.3    Weber, B.4
  • 24
    • 84893467682 scopus 로고    scopus 로고
    • Neural network ensemble operators for time series forecasting
    • Kourentzes N., Barrow D.K., and Crone S.F. Neural network ensemble operators for time series forecasting Expert Systems with Applications 41 9 2014 4235 4244 http://dx.doi.org/10.1016/j.eswa.2013.12.011
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4235-4244
    • Kourentzes, N.1    Barrow, D.K.2    Crone, S.F.3
  • 25
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Machine Learning 51 2 2003 181 207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 27
    • 84906815136 scopus 로고    scopus 로고
    • Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction
    • Ma Z., Dai Q., and Liu N. Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction Expert Systems with Applications 42 1 2015 280 292 http://dx.doi.org/10.1016/j.eswa.2014.07.049
    • (2015) Expert Systems with Applications , vol.42 , Issue.1 , pp. 280-292
    • Ma, Z.1    Dai, Q.2    Liu, N.3
  • 31
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach L. Ensemble-based classifiers Artificial Intelligence Review 33 1-2 2010 1 39 10.1007/s10462-009-9124-7
    • (2010) Artificial Intelligence Review , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 32
    • 84929169606 scopus 로고    scopus 로고
    • Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems
    • Simidjievski N., Todorovski L., and Džeroski S. Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems Ecological Modelling 306 0 2015 305 317 http://dx.doi.org/10.1016/j.ecolmodel.2014.08.019
    • (2015) Ecological Modelling , vol.306 , pp. 305-317
    • Simidjievski, N.1    Todorovski, L.2    Džeroski, S.3
  • 33
    • 84921452225 scopus 로고    scopus 로고
    • Bag of class posteriors, a new multivariate time series classifier applied to animal behaviour identification
    • Smith D., Dutta R., Hellicar A., Bishop-Hurley G., Rawnsley R., Henry D., and et al. Bag of class posteriors, a new multivariate time series classifier applied to animal behaviour identification Expert Systems with Applications 42 7 2015 3774 3784 http://dx.doi.org/10.1016/j.eswa.2014.11.033
    • (2015) Expert Systems with Applications , vol.42 , Issue.7 , pp. 3774-3784
    • Smith, D.1    Dutta, R.2    Hellicar, A.3    Bishop-Hurley, G.4    Rawnsley, R.5    Henry, D.6
  • 34
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution a simple and efficient heuristic for global optimization over continuous spaces
    • Storn R., and Price K. Differential evolution a simple and efficient heuristic for global optimization over continuous spaces Journal of Global Optimization 11 4 1997 341 359 10.1023/A:1008202821328
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 35
    • 84455178990 scopus 로고    scopus 로고
    • Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization
    • Taškova K., Šilc J., Atanasova N., and Džeroski S. Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization Ecological Modelling 226 2012 36 61
    • (2012) Ecological Modelling , vol.226 , pp. 36-61
    • Taškova, K.1    Šilc, J.2    Atanasova, N.3    Džeroski, S.4
  • 36
    • 84867674936 scopus 로고    scopus 로고
    • Ensemble-based regression analysis of multimodal medical data for osteopenia diagnosis
    • Tay W.-L., Chui C.-K., Ong S.-H., and Ng A.C.-M. Ensemble-based regression analysis of multimodal medical data for osteopenia diagnosis Expert Systems with Applications 40 2 2013 811 819
    • (2013) Expert Systems with Applications , vol.40 , Issue.2 , pp. 811-819
    • Tay, W.-L.1    Chui, C.-K.2    Ong, S.-H.3    Ng, A.C.-M.4
  • 38
    • 38149023419 scopus 로고    scopus 로고
    • Integrating domain knowledge in equation discovery
    • S. Dzeroski, L. Todorovski, Lecture Notes in Computer Science Springer
    • Todorovski L., and Džeroski S. Integrating domain knowledge in equation discovery S. Dzeroski, L. Todorovski, Computational discovery of scientific knowledge Lecture Notes in Computer Science vol. 4660 2007 Springer 69 97
    • (2007) Computational Discovery of Scientific Knowledge , vol.4660 , pp. 69-97
    • Todorovski, L.1    Džeroski, S.2
  • 39
    • 84856431031 scopus 로고    scopus 로고
    • A multi-model ensemble method that combines imperfect models through learning
    • van den Berge L.A., Selten F.M., Wiegerinck W., and Duane G.S. A multi-model ensemble method that combines imperfect models through learning Earth System Dynamics 2 1 2011 161 177
    • (2011) Earth System Dynamics , vol.2 , Issue.1 , pp. 161-177
    • Van Den Berge, L.A.1    Selten, F.M.2    Wiegerinck, W.3    Duane, G.S.4
  • 41
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization Neural Networks 5 1992 241 259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.