-
1
-
-
0036851826
-
Vascular proliferation and atherosclerosis: New perspectives and therapeutic strategies
-
Dzau, V. J., Braun-Dullaeus, R. C. & Sedding, D. G. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat. Med. 8, 1249-1256 (2002).
-
(2002)
Nat. Med.
, vol.8
, pp. 1249-1256
-
-
Dzau, V.J.1
Braun-Dullaeus, R.C.2
Sedding, D.G.3
-
2
-
-
34547957602
-
The pathophysiology and burden of restenosis
-
Weintraub, W. S. The pathophysiology and burden of restenosis. Am. J. Cardiol. 100, 3K-9K (2007).
-
(2007)
Am. J. Cardiol.
, vol.100
, pp. 3K-9K
-
-
Weintraub, W.S.1
-
3
-
-
3042588831
-
Molecular regulation of vascular smooth muscle cell differentiation in development and disease
-
Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767-801 (2004).
-
(2004)
Physiol. Rev.
, vol.84
, pp. 767-801
-
-
Owens, G.K.1
Kumar, M.S.2
Wamhoff, B.R.3
-
4
-
-
79957463838
-
SIRT1 acts as a modulator of neointima formation following vascular injury in mice
-
Li, L. et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ. Res. 108, 1180-1189 (2011).
-
(2011)
Circ. Res.
, vol.108
, pp. 1180-1189
-
-
Li, L.1
-
5
-
-
0037188929
-
Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo
-
Ahn, J. D. et al. Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circ. Res. 90, 1325-1332 (2002).
-
(2002)
Circ. Res.
, vol.90
, pp. 1325-1332
-
-
Ahn, J.D.1
-
6
-
-
0036843534
-
Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury
-
Cho, A. & Reidy, M. A. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ. Res. 91, 845-851 (2002).
-
(2002)
Circ. Res.
, vol.91
, pp. 845-851
-
-
Cho, A.1
Reidy, M.A.2
-
7
-
-
34250793069
-
The interferon regulatory factor family in host defense: Mechanism of action
-
Ozato, K., Tailor, P. & Kubota, T. The interferon regulatory factor family in host defense: mechanism of action. J. Biol. Chem. 282, 20065-20069 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20065-20069
-
-
Ozato, K.1
Tailor, P.2
Kubota, T.3
-
8
-
-
42649114059
-
The IRF family transcription factors in immunity and oncogenesis
-
Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535-584 (2008).
-
(2008)
Annu. Rev. Immunol.
, vol.26
, pp. 535-584
-
-
Tamura, T.1
Yanai, H.2
Savitsky, D.3
Taniguchi, T.4
-
9
-
-
84904915021
-
The IRF family transcription factors at the interface of innate and adaptive immune responses
-
Ikushima, H., Negishi, H. & Taniguchi, T. The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb. Symp. Quant. Biol. 78, 105-116 (2013).
-
(2013)
Cold Spring Harb. Symp. Quant. Biol.
, vol.78
, pp. 105-116
-
-
Ikushima, H.1
Negishi, H.2
Taniguchi, T.3
-
10
-
-
84877656613
-
The IRF family of transcription factors: Inception, impact and implications in oncogenesis
-
Yanai, H., Negishi, H. & Taniguchi, T. The IRF family of transcription factors: inception, impact and implications in oncogenesis. Oncoimmunology 1, 1376-1386 (2012).
-
(2012)
Oncoimmunology
, vol.1
, pp. 1376-1386
-
-
Yanai, H.1
Negishi, H.2
Taniguchi, T.3
-
11
-
-
78049247990
-
Combining theoretical analysis and experimental data generation reveals IRF9 as a crucial factor for accelerating interferon alpha-induced early antiviral signalling
-
Maiwald, T. et al. Combining theoretical analysis and experimental data generation reveals IRF9 as a crucial factor for accelerating interferon alpha-induced early antiviral signalling. FEBS. J. 277, 4741-4754 (2010).
-
(2010)
FEBS. J
, vol.277
, pp. 4741-4754
-
-
Maiwald, T.1
-
12
-
-
0041662272
-
Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence
-
Takaoka, A. et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516-523 (2003).
-
(2003)
Nature
, vol.424
, pp. 516-523
-
-
Takaoka, A.1
-
13
-
-
0035420016
-
Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells
-
Luker, K. E., Pica, C. M., Schreiber, R. D. & Piwnica-Worms, D. Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells. Cancer Res. 61, 6540-6547 (2001).
-
(2001)
Cancer Res.
, vol.61
, pp. 6540-6547
-
-
Luker, K.E.1
Pica, C.M.2
Schreiber, R.D.3
Piwnica-Worms, D.4
-
14
-
-
84896696454
-
Interferon regulatory factor 3 constrains IKKbeta/NF-kappaB signaling to alleviate hepatic steatosis and insulin resistance
-
Wang, X. A. et al. Interferon regulatory factor 3 constrains IKKbeta/NF-kappaB signaling to alleviate hepatic steatosis and insulin resistance. Hepatology 59, 870-885 (2014).
-
(2014)
Hepatology
, vol.59
, pp. 870-885
-
-
Wang, X.A.1
-
15
-
-
84881642190
-
Interferon regulatory factor 7 deficiency prevents diet-induced obesity and insulin resistance
-
Wang, X. A. et al. Interferon regulatory factor 7 deficiency prevents diet-induced obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 305, E485-E495 (2013).
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.305
, pp. E485-E495
-
-
Wang, X.A.1
-
16
-
-
84881030779
-
Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice
-
Wang, X. A. et al. Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice. Hepatology 58, 603-616 (2013).
-
(2013)
Hepatology
, vol.58
, pp. 603-616
-
-
Wang, X.A.1
-
17
-
-
84872013157
-
Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy
-
Lu, J. et al. Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy. Basic Res. Cardiol. 108, 326 (2013).
-
(2013)
Basic Res. Cardiol.
, vol.108
, pp. 326
-
-
Lu, J.1
-
18
-
-
84878913857
-
Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy
-
Jiang, D. S. et al. Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy. Hypertension 61, 1193-1202 (2013).
-
(2013)
Hypertension
, vol.61
, pp. 1193-1202
-
-
Jiang, D.S.1
-
19
-
-
84891624887
-
Interferon regulatory factor 9 protects against cardiac hypertrophy by targeting myocardin
-
Jiang, D. S. et al. Interferon regulatory factor 9 protects against cardiac hypertrophy by targeting myocardin. Hypertension 63, 119-127 (2014).
-
(2014)
Hypertension
, vol.63
, pp. 119-127
-
-
Jiang, D.S.1
-
20
-
-
84884363591
-
SIRT1 as a novel potential treatment target for vascular aging and age-related vascular diseases
-
Wang, F., Chen, H. Z., Lv, X. & Liu, D. P. SIRT1 as a novel potential treatment target for vascular aging and age-related vascular diseases. Curr. Mol. Med. 13, 155-164 (2013).
-
(2013)
Curr. Mol. Med.
, vol.13
, pp. 155-164
-
-
Wang, F.1
Chen, H.Z.2
Lv, X.3
Liu, D.P.4
-
21
-
-
79959312607
-
Pathogenesis of neointima formation following vascular injury
-
ER, O. B., Ma, X., Simard, T., Pourdjabbar, A. & Hibbert, B. Pathogenesis of neointima formation following vascular injury. Cardiovasc. Hematol. Disord. Drug Targets 11, 30-39 (2011).
-
(2011)
Cardiovasc. Hematol. Disord. Drug Targets
, vol.11
, pp. 30-39
-
-
Er, O.B.1
Ma, X.2
Simard, T.3
Pourdjabbar, A.4
Hibbert, B.5
-
22
-
-
0035947290
-
Transcriptome analysis reveals a role of interferon-gamma in human neointima formation
-
Zohlnhofer, D. et al. Transcriptome analysis reveals a role of interferon-gamma in human neointima formation. Mol. Cell 7, 1059-1069 (2001).
-
(2001)
Mol. Cell
, vol.7
, pp. 1059-1069
-
-
Zohlnhofer, D.1
-
23
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1-13 (2007).
-
(2007)
Biochem. J.
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
24
-
-
84858797950
-
Sirtuins as regulators of metabolism and healthspan
-
Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225-238 (2012).
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 225-238
-
-
Houtkooper, R.H.1
Pirinen, E.2
Auwerx, J.3
-
25
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki, A. & Guarente, L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287-296 (2012).
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
26
-
-
33746228121
-
Sirtuins in aging and age-related disease
-
Longo, V. D. & Kennedy, B. K. Sirtuins in aging and age-related disease. Cell 126, 257-268 (2006).
-
(2006)
Cell
, vol.126
, pp. 257-268
-
-
Longo, V.D.1
Kennedy, B.K.2
-
27
-
-
84874594425
-
The sirtuin family's role in aging and age-associated pathologies
-
Hall, J. A., Dominy, J. E., Lee, Y. & Puigserver, P. The sirtuin family's role in aging and age-associated pathologies. J. Clin. Invest. 123, 973-979 (2013).
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 973-979
-
-
Hall, J.A.1
Dominy, J.E.2
Lee, Y.3
Puigserver, P.4
-
28
-
-
35549008884
-
SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
-
Mattagajasingh, I. et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 104, 14855-14860 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 14855-14860
-
-
Mattagajasingh, I.1
-
29
-
-
54149103338
-
Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice
-
Zhang, Q. J. et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc. Res. 80, 191-199 (2008).
-
(2008)
Cardiovasc. Res.
, vol.80
, pp. 191-199
-
-
Zhang, Q.J.1
-
30
-
-
80052580047
-
Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction
-
Zhou, S. et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ. Res. 109, 639-648 (2011).
-
(2011)
Circ. Res.
, vol.109
, pp. 639-648
-
-
Zhou, S.1
-
31
-
-
77951211562
-
SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages
-
Zhang, R. et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. J. Biol. Chem. 285, 7097-7110 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7097-7110
-
-
Zhang, R.1
-
32
-
-
30444439216
-
The discovery of nitric oxide and its role in vascular biology
-
Moncada, S. & Higgs, E. A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147, S193-S201 (2006).
-
(2006)
Br. J. Pharmacol.
, vol.147
, pp. S193-S201
-
-
Moncada, S.1
Higgs, E.A.2
-
33
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega, L. G. et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 12, 1069-1076 (2011).
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
-
34
-
-
10844236451
-
Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
-
Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 2105-2108 (2004).
-
(2004)
Science
, vol.306
, pp. 2105-2108
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
35
-
-
79953152333
-
FoxO1 mediates an autofeedback loop regulating SIRT1 expression
-
Xiong, S., Salazar, G., Patrushev, N. & Alexander, R. W. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem. 286, 5289-5299 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5289-5299
-
-
Xiong, S.1
Salazar, G.2
Patrushev, N.3
Alexander, R.W.4
-
36
-
-
77952288176
-
Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice
-
Hayashida, S. et al. Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol. Cell Biochem. 339, 285-292 (2010).
-
(2010)
Mol. Cell Biochem.
, vol.339
, pp. 285-292
-
-
Hayashida, S.1
-
37
-
-
77953633702
-
PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1
-
Okazaki, M. et al. PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 57, 403-413 (2010).
-
(2010)
Endocr. J.
, vol.57
, pp. 403-413
-
-
Okazaki, M.1
-
38
-
-
33846505019
-
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
-
Zhang, Q. et al. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc. Natl Acad. Sci. USA 104, 829-833 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 829-833
-
-
Zhang, Q.1
-
39
-
-
78649852533
-
SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence
-
Han, L. et al. SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 38, 7458-7471 (2010).
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7458-7471
-
-
Han, L.1
-
40
-
-
84896914528
-
Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK
-
Thompson, A. M., Martin, K. A. & Rzucidlo, E. M. Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PLoS ONE 9, e85495 (2014).
-
(2014)
PLoS ONE
, vol.9
-
-
Thompson, A.M.1
Martin, K.A.2
Rzucidlo, E.M.3
-
41
-
-
0030785597
-
The interferon-inducible murine p48 (ISGF3gamma) gene is regulated by protooncogene c-myc
-
Weihua, X., Lindner, D. J. & Kalvakolanu, D. V. The interferon-inducible murine p48 (ISGF3gamma) gene is regulated by protooncogene c-myc. Proc. Natl Acad. Sci. USA 94, 7227-7232 (1997).
-
(1997)
Proc. Natl Acad. Sci. USA
, vol.94
, pp. 7227-7232
-
-
Weihua, X.1
Lindner, D.J.2
Kalvakolanu, D.V.3
-
42
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng, H.-L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA 100, 10794-10799 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.-L.1
-
43
-
-
84892455339
-
Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin
-
Zhang, S. M. et al. Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin. Mol. Cell Biol. 34, 400-414 (2014).
-
(2014)
Mol. Cell Biol.
, vol.34
, pp. 400-414
-
-
Zhang, S.M.1
|