메뉴 건너뛰기




Volumn 1863, Issue 6, 2016, Pages 1298-1306

Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease

Author keywords

Erv1; Mia40; Mitochondrial intermembrane space; Mitochondrial protein import; Oxidative protein folding; Thiol disulfide exchange

Indexed keywords

MITOCHONDRIAL PROTEIN; REACTIVE OXYGEN METABOLITE;

EID: 84962711775     PISSN: 01674889     EISSN: 18792596     Source Type: Journal    
DOI: 10.1016/j.bbamcr.2016.03.023     Document Type: Review
Times cited : (28)

References (146)
  • 2
    • 84906318502 scopus 로고    scopus 로고
    • Phospholipid transport via mitochondria
    • Tamura Y., Sesaki H., Endo T. Phospholipid transport via mitochondria. Traffic 2014, 15:933-945.
    • (2014) Traffic , vol.15 , pp. 933-945
    • Tamura, Y.1    Sesaki, H.2    Endo, T.3
  • 3
    • 84895526498 scopus 로고    scopus 로고
    • The topology and regulation of cardiolipin biosynthesis and remodeling in yeast
    • Baile M.G., Lu Y.-W., Claypool S.M. The topology and regulation of cardiolipin biosynthesis and remodeling in yeast. Chem. Phys. Lipids 2014, 179:25-31.
    • (2014) Chem. Phys. Lipids , vol.179 , pp. 25-31
    • Baile, M.G.1    Lu, Y.-W.2    Claypool, S.M.3
  • 5
    • 68949128587 scopus 로고    scopus 로고
    • Function and biogenesis of iron-sulphur proteins
    • Lill R. Function and biogenesis of iron-sulphur proteins. Nature 2009, 460:831-838.
    • (2009) Nature , vol.460 , pp. 831-838
    • Lill, R.1
  • 6
    • 84908380518 scopus 로고    scopus 로고
    • The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation
    • Lill R., Srinivasan V., Mühlenhoff U. The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr. Opin. Microbiol. 2014, 22:111-119.
    • (2014) Curr. Opin. Microbiol. , vol.22 , pp. 111-119
    • Lill, R.1    Srinivasan, V.2    Mühlenhoff, U.3
  • 7
    • 33746016268 scopus 로고    scopus 로고
    • Mitochondria: more than just a powerhouse
    • McBride H.M., Neuspiel M., Wasiak S. Mitochondria: more than just a powerhouse. Curr. Biol. 2006, 16:R551-R560.
    • (2006) Curr. Biol. , vol.16 , pp. R551-R560
    • McBride, H.M.1    Neuspiel, M.2    Wasiak, S.3
  • 10
    • 77956309299 scopus 로고    scopus 로고
    • Oxidative protein folding in the mitochondrial intermembrane space
    • Sideris D.P., Tokatlidis K. Oxidative protein folding in the mitochondrial intermembrane space. Antioxid. Redox Signal. 2010, 13:1189-1204.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1189-1204
    • Sideris, D.P.1    Tokatlidis, K.2
  • 11
    • 84856853161 scopus 로고    scopus 로고
    • Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space
    • Herrmann J.M., Riemer J. Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J. Biol. Chem. 2012, 287:4426-4433.
    • (2012) J. Biol. Chem. , vol.287 , pp. 4426-4433
    • Herrmann, J.M.1    Riemer, J.2
  • 12
    • 84872175634 scopus 로고    scopus 로고
    • The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis
    • Chatzi A., Tokatlidis K. The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis. Antioxid. Redox Signal. 2012, 1-33.
    • (2012) Antioxid. Redox Signal.
    • Chatzi, A.1    Tokatlidis, K.2
  • 13
    • 34249873947 scopus 로고    scopus 로고
    • Translocation of proteins into mitochondria
    • Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76:723-749.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 723-749
    • Neupert, W.1    Herrmann, J.M.2
  • 15
    • 0034598904 scopus 로고    scopus 로고
    • Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20
    • Abe Y., Shodai T., Muto T., Mihara K., Torii H., Nishikawa S., Endo T., Kohda D. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 2000, 100:551-560.
    • (2000) Cell , vol.100 , pp. 551-560
    • Abe, Y.1    Shodai, T.2    Muto, T.3    Mihara, K.4    Torii, H.5    Nishikawa, S.6    Endo, T.7    Kohda, D.8
  • 16
    • 77953020406 scopus 로고    scopus 로고
    • On the mechanism of preprotein import by the mitochondrial presequence translocase
    • van der Laan M., Hutu D.P., Rehling P. On the mechanism of preprotein import by the mitochondrial presequence translocase. Biochim. Biophys. Acta 2010, 1803:732-739.
    • (2010) Biochim. Biophys. Acta , vol.1803 , pp. 732-739
    • van der Laan, M.1    Hutu, D.P.2    Rehling, P.3
  • 17
    • 84871889041 scopus 로고    scopus 로고
    • Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria
    • Ferramosca A., Zara V. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. Biochim. Biophys. Acta 2013, 1833:494-502.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 494-502
    • Ferramosca, A.1    Zara, V.2
  • 21
    • 0037428164 scopus 로고    scopus 로고
    • Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70
    • Young J.C., Hoogenraad N.J., Hartl F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 2003, 112:41-50.
    • (2003) Cell , vol.112 , pp. 41-50
    • Young, J.C.1    Hoogenraad, N.J.2    Hartl, F.U.3
  • 24
    • 84885217184 scopus 로고    scopus 로고
    • From inventory to functional mechanisms: regulation of the mitochondrial protein import machinery by phosphorylation
    • Gerbeth C., Mikropoulou D., Meisinger C. From inventory to functional mechanisms: regulation of the mitochondrial protein import machinery by phosphorylation. FEBS J. 2013, 280:4933-4942.
    • (2013) FEBS J. , vol.280 , pp. 4933-4942
    • Gerbeth, C.1    Mikropoulou, D.2    Meisinger, C.3
  • 25
    • 79959990894 scopus 로고    scopus 로고
    • Signaling at the gate: phosphorylation of the mitochondrial protein import machinery
    • Rao S., Gerbeth C., Harbauer A., Mikropoulou D., Meisinger C., Schmidt O. Signaling at the gate: phosphorylation of the mitochondrial protein import machinery. Cell Cycle 2011, 10:2083-2090.
    • (2011) Cell Cycle , vol.10 , pp. 2083-2090
    • Rao, S.1    Gerbeth, C.2    Harbauer, A.3    Mikropoulou, D.4    Meisinger, C.5    Schmidt, O.6
  • 26
    • 84860360738 scopus 로고    scopus 로고
    • Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import
    • Rao S., Schmidt O., Harbauer A.B., Schönfisch B., Guiard B., Pfanner N., Meisinger C. Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 2012, 23:1618-1627.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1618-1627
    • Rao, S.1    Schmidt, O.2    Harbauer, A.B.3    Schönfisch, B.4    Guiard, B.5    Pfanner, N.6    Meisinger, C.7
  • 27
    • 78650418885 scopus 로고    scopus 로고
    • Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane
    • Becker T., Wenz L.-S., Thornton N., Stroud D., Meisinger C., Wiedemann N., Pfanner N. Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J. Mol. Biol. 2011, 405:113-124.
    • (2011) J. Mol. Biol. , vol.405 , pp. 113-124
    • Becker, T.1    Wenz, L.-S.2    Thornton, N.3    Stroud, D.4    Meisinger, C.5    Wiedemann, N.6    Pfanner, N.7
  • 28
    • 84906070898 scopus 로고    scopus 로고
    • Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix
    • Melin J., Schulz C., Wrobel L., Bernhard O., Chacinska A., Jahn O., Schmidt B., Rehling P. Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol. Cell. Biol. 2014, 34:3473-3485.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 3473-3485
    • Melin, J.1    Schulz, C.2    Wrobel, L.3    Bernhard, O.4    Chacinska, A.5    Jahn, O.6    Schmidt, B.7    Rehling, P.8
  • 30
    • 84866998544 scopus 로고    scopus 로고
    • Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins
    • Durigon R., Wang Q., Ceh Pavia E., Grant C.M., Lu H. Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins. EMBO Rep. 2012, 13:916-922.
    • (2012) EMBO Rep. , vol.13 , pp. 916-922
    • Durigon, R.1    Wang, Q.2    Ceh Pavia, E.3    Grant, C.M.4    Lu, H.5
  • 31
    • 84879001260 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins
    • Bragoszewski P., Gornicka A., Sztolsztener M.E., Chacinska A. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol. Cell. Biol. 2013, 33:2136-2148.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 2136-2148
    • Bragoszewski, P.1    Gornicka, A.2    Sztolsztener, M.E.3    Chacinska, A.4
  • 32
    • 61449226468 scopus 로고    scopus 로고
    • Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand
    • Gohil V.M., Greenberg M.L. Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand. J. Cell Biol. 2009, 184:469-472.
    • (2009) J. Cell Biol. , vol.184 , pp. 469-472
    • Gohil, V.M.1    Greenberg, M.L.2
  • 35
    • 77955400948 scopus 로고    scopus 로고
    • Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport
    • Bohnert M., Rehling P., Guiard B., Herrmann J.M., Pfanner N., van der Laan M. Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Curr. Biol. 2010, 20:1227-1232.
    • (2010) Curr. Biol. , vol.20 , pp. 1227-1232
    • Bohnert, M.1    Rehling, P.2    Guiard, B.3    Herrmann, J.M.4    Pfanner, N.5    van der Laan, M.6
  • 38
    • 38749085210 scopus 로고    scopus 로고
    • The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis
    • Chan N.C., Lithgow T. The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol. Biol. Cell 2008, 19:126-136.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 126-136
    • Chan, N.C.1    Lithgow, T.2
  • 39
    • 0032854652 scopus 로고    scopus 로고
    • Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway
    • Kurz M., Martin H., Rassow J., Pfanner N., Ryan M.T. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol. Biol. Cell 1999, 10:2461-2474.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 2461-2474
    • Kurz, M.1    Martin, H.2    Rassow, J.3    Pfanner, N.4    Ryan, M.T.5
  • 42
    • 38049132624 scopus 로고    scopus 로고
    • Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space
    • Grumbt B., Stroobant V., Terziyska N., Israel L., Hell K. Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space. J. Biol. Chem. 2007, 282:37461-37470.
    • (2007) J. Biol. Chem. , vol.282 , pp. 37461-37470
    • Grumbt, B.1    Stroobant, V.2    Terziyska, N.3    Israel, L.4    Hell, K.5
  • 49
    • 84919465929 scopus 로고    scopus 로고
    • The great escape: Mgr2 of the mitochondrial TIM23 translocon is a gatekeeper Tasked with releasing membrane proteins
    • Steffen J., Koehler C.M. The great escape: Mgr2 of the mitochondrial TIM23 translocon is a gatekeeper Tasked with releasing membrane proteins. Mol. Cell 2014, 56:613-614.
    • (2014) Mol. Cell , vol.56 , pp. 613-614
    • Steffen, J.1    Koehler, C.M.2
  • 52
    • 38649109133 scopus 로고    scopus 로고
    • Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane
    • Popov-Celeketić J., Waizenegger T., Rapaport D. Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. J. Mol. Biol. 2008, 376:671-680.
    • (2008) J. Mol. Biol. , vol.376 , pp. 671-680
    • Popov-Celeketić, J.1    Waizenegger, T.2    Rapaport, D.3
  • 53
  • 54
    • 80054772036 scopus 로고    scopus 로고
    • MINOS is plus: a Mitofilin complex for mitochondrial membrane contacts
    • Herrmann J.M. MINOS is plus: a Mitofilin complex for mitochondrial membrane contacts. Dev. Cell 2011, 21:599-600.
    • (2011) Dev. Cell , vol.21 , pp. 599-600
    • Herrmann, J.M.1
  • 62
    • 84860859573 scopus 로고    scopus 로고
    • Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking
    • Tamura Y., Onguka O., Hobbs A.E.A., Jensen R.E., Iijima M., Claypool S.M., Sesaki H. Role for two conserved intermembrane space proteins, Ups1p and Ups2p, [corrected] in intra-mitochondrial phospholipid trafficking. J. Biol. Chem. 2012, 287:15205-15218.
    • (2012) J. Biol. Chem. , vol.287 , pp. 15205-15218
    • Tamura, Y.1    Onguka, O.2    Hobbs, A.E.A.3    Jensen, R.E.4    Iijima, M.5    Claypool, S.M.6    Sesaki, H.7
  • 65
    • 84873470266 scopus 로고    scopus 로고
    • Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40
    • Sztolsztener M.E., Brewinska A., Guiard B., Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic 2013, 14:309-320.
    • (2013) Traffic , vol.14 , pp. 309-320
    • Sztolsztener, M.E.1    Brewinska, A.2    Guiard, B.3    Chacinska, A.4
  • 66
    • 11144339526 scopus 로고    scopus 로고
    • Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions
    • Terziyska N., Lutz T., Kozany C., Mokranjac D., Mesecke N., Neupert W., Herrmann J.M., Hell K. Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett. 2005, 579:179-184.
    • (2005) FEBS Lett. , vol.579 , pp. 179-184
    • Terziyska, N.1    Lutz, T.2    Kozany, C.3    Mokranjac, D.4    Mesecke, N.5    Neupert, W.6    Herrmann, J.M.7    Hell, K.8
  • 67
    • 56349145181 scopus 로고    scopus 로고
    • Thiol oxidation in bacteria, mitochondria and chloroplasts: common principles but three unrelated machineries?
    • Herrmann J.M., Kauff F., Neuhaus H.E. Thiol oxidation in bacteria, mitochondria and chloroplasts: common principles but three unrelated machineries?. Biochim. Biophys. Acta 2009, 1793:71-77.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 71-77
    • Herrmann, J.M.1    Kauff, F.2    Neuhaus, H.E.3
  • 68
    • 27144438677 scopus 로고    scopus 로고
    • Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c
    • Allen S., Balabanidou V., Sideris D.P., Lisowsky T., Tokatlidis K. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 2005, 353:937-944.
    • (2005) J. Mol. Biol. , vol.353 , pp. 937-944
    • Allen, S.1    Balabanidou, V.2    Sideris, D.P.3    Lisowsky, T.4    Tokatlidis, K.5
  • 70
    • 77957053865 scopus 로고    scopus 로고
    • The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria
    • Lionaki E., Aivaliotis M., Pozidis C., Tokatlidis K. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria. Antioxid. Redox Signal. 2010, 13:1327-1339.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1327-1339
    • Lionaki, E.1    Aivaliotis, M.2    Pozidis, C.3    Tokatlidis, K.4
  • 71
    • 77954699828 scopus 로고    scopus 로고
    • Trapping oxidative folding intermediates during translocation to the intermembrane space of mitochondria: in vivo and in vitro studies
    • Sideris D.P., Tokatlidis K. Trapping oxidative folding intermediates during translocation to the intermembrane space of mitochondria: in vivo and in vitro studies. Methods Mol. Biol. 2010, 619:411-423.
    • (2010) Methods Mol. Biol. , vol.619 , pp. 411-423
    • Sideris, D.P.1    Tokatlidis, K.2
  • 73
    • 0034866458 scopus 로고    scopus 로고
    • An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins
    • Lange H., Lisowsky T., Gerber J., Mühlenhoff U., Kispal G., Lill R. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep. 2001, 2:715-720.
    • (2001) EMBO Rep. , vol.2 , pp. 715-720
    • Lange, H.1    Lisowsky, T.2    Gerber, J.3    Mühlenhoff, U.4    Kispal, G.5    Lill, R.6
  • 76
    • 48749118215 scopus 로고    scopus 로고
    • Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins
    • Allen J.W.A., Ferguson S.J., Ginger M.L. Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins. FEBS Lett. 2008, 582:2817-2825.
    • (2008) FEBS Lett. , vol.582 , pp. 2817-2825
    • Allen, J.W.A.1    Ferguson, S.J.2    Ginger, M.L.3
  • 79
    • 84869226106 scopus 로고    scopus 로고
    • Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria
    • Weckbecker D., Longen S., Riemer J., Herrmann J.M. Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO J. 2012, 31:4348-4358.
    • (2012) EMBO J. , vol.31 , pp. 4348-4358
    • Weckbecker, D.1    Longen, S.2    Riemer, J.3    Herrmann, J.M.4
  • 80
    • 84874584406 scopus 로고    scopus 로고
    • Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria
    • Wrobel L., Trojanowska A., Sztolsztener M.E., Chacinska A. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol. Biol. Cell 2013, 24:543-554.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 543-554
    • Wrobel, L.1    Trojanowska, A.2    Sztolsztener, M.E.3    Chacinska, A.4
  • 81
    • 84892184637 scopus 로고    scopus 로고
    • Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria
    • Koch J.R., Schmid F.X. Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria. Nat. Commun. 2014, 5:3041.
    • (2014) Nat. Commun. , vol.5 , pp. 3041
    • Koch, J.R.1    Schmid, F.X.2
  • 82
    • 84914145323 scopus 로고    scopus 로고
    • Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria
    • Koch J.R., Schmid F.X. Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria. J. Mol. Biol. 2014, 426:4087-4098.
    • (2014) J. Mol. Biol. , vol.426 , pp. 4087-4098
    • Koch, J.R.1    Schmid, F.X.2
  • 83
    • 84913525921 scopus 로고    scopus 로고
    • Mia40 is optimized for function in mitochondrial oxidative protein folding and import
    • Koch J.R., Schmid F.X. Mia40 is optimized for function in mitochondrial oxidative protein folding and import. ACS Chem. Biol. 2014, 9:2049-2057.
    • (2014) ACS Chem. Biol. , vol.9 , pp. 2049-2057
    • Koch, J.R.1    Schmid, F.X.2
  • 84
    • 84885321622 scopus 로고    scopus 로고
    • Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features
    • Chatzi A., Sideris D.P., Katrakili N., Pozidis C., Tokatlidis K. Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features. FEBS J. 2013, 4960-4969.
    • (2013) FEBS J. , pp. 4960-4969
    • Chatzi, A.1    Sideris, D.P.2    Katrakili, N.3    Pozidis, C.4    Tokatlidis, K.5
  • 86
    • 84943457679 scopus 로고    scopus 로고
    • The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake
    • Petrungaro C., Zimmermann K.M., Küttner V., Fischer M., Dengjel J., Bogeski I., Riemer J. The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metab. 2015, 22:721-733.
    • (2015) Cell Metab. , vol.22 , pp. 721-733
    • Petrungaro, C.1    Zimmermann, K.M.2    Küttner, V.3    Fischer, M.4    Dengjel, J.5    Bogeski, I.6    Riemer, J.7
  • 88
  • 89
    • 77149120128 scopus 로고    scopus 로고
    • Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione
    • Bien M., Longen S., Wagener N., Chwalla I., Herrmann J.M., Riemer J. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol. Cell 2010, 37:516-528.
    • (2010) Mol. Cell , vol.37 , pp. 516-528
    • Bien, M.1    Longen, S.2    Wagener, N.3    Chwalla, I.4    Herrmann, J.M.5    Riemer, J.6
  • 90
    • 84875740128 scopus 로고    scopus 로고
    • Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast
    • Toledano M.B., Delaunay-Moisan A., Outten C.E., Igbaria A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid. Redox Signal. 2013, 18:1699-1711.
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 1699-1711
    • Toledano, M.B.1    Delaunay-Moisan, A.2    Outten, C.E.3    Igbaria, A.4
  • 92
    • 13844313006 scopus 로고    scopus 로고
    • Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae
    • Trotter E.W., Grant C.M. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot. Cell 2005, 4:392-400.
    • (2005) Eukaryot. Cell , vol.4 , pp. 392-400
    • Trotter, E.W.1    Grant, C.M.2
  • 93
    • 3543095148 scopus 로고    scopus 로고
    • Monitoring disulfide bond formation in the eukaryotic cytosol
    • Østergaard H., Tachibana C., Winther J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 2004, 166:337-345.
    • (2004) J. Cell Biol. , vol.166 , pp. 337-345
    • Østergaard, H.1    Tachibana, C.2    Winther, J.R.3
  • 94
    • 57649183232 scopus 로고    scopus 로고
    • The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix
    • Hu J., Dong L., Outten C.E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J. Biol. Chem. 2008, 283:29126-29134.
    • (2008) J. Biol. Chem. , vol.283 , pp. 29126-29134
    • Hu, J.1    Dong, L.2    Outten, C.E.3
  • 95
    • 84864119697 scopus 로고    scopus 로고
    • Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state
    • Kojer K., Bien M., Gangel H., Morgan B., Dick T.P., Riemer J. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J. 2012, 31:3169-3182.
    • (2012) EMBO J. , vol.31 , pp. 3169-3182
    • Kojer, K.1    Bien, M.2    Gangel, H.3    Morgan, B.4    Dick, T.P.5    Riemer, J.6
  • 96
    • 84920982875 scopus 로고    scopus 로고
    • Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space
    • Kojer K., Peleh V., Calabrese G., Herrmann J.M., Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol. Biol. Cell 2015, 26:195-204.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 195-204
    • Kojer, K.1    Peleh, V.2    Calabrese, G.3    Herrmann, J.M.4    Riemer, J.5
  • 97
    • 84859586432 scopus 로고    scopus 로고
    • The response to heat shock and oxidative stress in Saccharomyces cerevisiae
    • Morano K.A., Grant C.M., Moye-Rowley W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190:1157-1195.
    • (2012) Genetics , vol.190 , pp. 1157-1195
    • Morano, K.A.1    Grant, C.M.2    Moye-Rowley, W.S.3
  • 98
    • 0041335593 scopus 로고    scopus 로고
    • Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family
    • Luk E., Carroll M., Baker M., Culotta V.C. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:10353-10357.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 10353-10357
    • Luk, E.1    Carroll, M.2    Baker, M.3    Culotta, V.C.4
  • 99
    • 38049039882 scopus 로고    scopus 로고
    • Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast
    • Lee S.-Y., Song J.-Y., Kwon E.-S., Roe J.-H. Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast. Biochem. Biophys. Res. Commun. 2008, 367:67-71.
    • (2008) Biochem. Biophys. Res. Commun. , vol.367 , pp. 67-71
    • Lee, S.-Y.1    Song, J.-Y.2    Kwon, E.-S.3    Roe, J.-H.4
  • 100
    • 0033578750 scopus 로고    scopus 로고
    • Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae
    • Inoue Y., Matsuda T., Sugiyama K., Izawa S., Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 1999, 274:27002-27009.
    • (1999) J. Biol. Chem. , vol.274 , pp. 27002-27009
    • Inoue, Y.1    Matsuda, T.2    Sugiyama, K.3    Izawa, S.4    Kimura, A.5
  • 101
    • 0035823498 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases
    • Avery A.M., Avery S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 2001, 276:33730-33735.
    • (2001) J. Biol. Chem. , vol.276 , pp. 33730-33735
    • Avery, A.M.1    Avery, S.V.2
  • 102
    • 79961127125 scopus 로고    scopus 로고
    • Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation
    • Ukai Y., Kishimoto T., Ohdate T., Izawa S., Inoue Y. Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem. Biophys. Res. Commun. 2011, 411:580-585.
    • (2011) Biochem. Biophys. Res. Commun. , vol.411 , pp. 580-585
    • Ukai, Y.1    Kishimoto, T.2    Ohdate, T.3    Izawa, S.4    Inoue, Y.5
  • 104
    • 78649704641 scopus 로고    scopus 로고
    • The role of active site residues in the oxidant specificity of the Orp1 thiol peroxidase
    • Takanishi C.L., Ma L.-H., Wood M.J. The role of active site residues in the oxidant specificity of the Orp1 thiol peroxidase. Biochem. Biophys. Res. Commun. 2010, 403:46-51.
    • (2010) Biochem. Biophys. Res. Commun. , vol.403 , pp. 46-51
    • Takanishi, C.L.1    Ma, L.-H.2    Wood, M.J.3
  • 105
    • 35748941361 scopus 로고    scopus 로고
    • Molecular mechanism of oxidative stress perception by the Orp1 protein
    • Ma L.-H., Takanishi C.L., Wood M.J. Molecular mechanism of oxidative stress perception by the Orp1 protein. J. Biol. Chem. 2007, 282:31429-31436.
    • (2007) J. Biol. Chem. , vol.282 , pp. 31429-31436
    • Ma, L.-H.1    Takanishi, C.L.2    Wood, M.J.3
  • 106
    • 33750629812 scopus 로고    scopus 로고
    • Glutathione peroxidases and redox-regulated transcription factors
    • Brigelius-Flohé R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 2006, 387:1329-1335.
    • (2006) Biol. Chem. , vol.387 , pp. 1329-1335
    • Brigelius-Flohé, R.1
  • 107
    • 60549093028 scopus 로고    scopus 로고
    • Chemical dissection of an essential redox switch in yeast
    • Paulsen C.E., Carroll K.S. Chemical dissection of an essential redox switch in yeast. Chem. Biol. 2009, 16:217-225.
    • (2009) Chem. Biol. , vol.16 , pp. 217-225
    • Paulsen, C.E.1    Carroll, K.S.2
  • 108
    • 80053215531 scopus 로고    scopus 로고
    • Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1
    • Gulshan K., Lee S.S., Moye-Rowley W.S. Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. J. Biol. Chem. 2011, 286:34071-34081.
    • (2011) J. Biol. Chem. , vol.286 , pp. 34071-34081
    • Gulshan, K.1    Lee, S.S.2    Moye-Rowley, W.S.3
  • 109
    • 33745210793 scopus 로고    scopus 로고
    • One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae
    • Porras P., Padilla C.A., Krayl M., Voos W., Bárcena J.A. One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281:16551-16562.
    • (2006) J. Biol. Chem. , vol.281 , pp. 16551-16562
    • Porras, P.1    Padilla, C.A.2    Krayl, M.3    Voos, W.4    Bárcena, J.A.5
  • 110
    • 76849107684 scopus 로고    scopus 로고
    • Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution
    • Porras P., McDonagh B., Pedrajas J.R., Bárcena J.A., Padilla C.A. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution. Biochim. Biophys. Acta 2010, 1804:839-845.
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 839-845
    • Porras, P.1    McDonagh, B.2    Pedrajas, J.R.3    Bárcena, J.A.4    Padilla, C.A.5
  • 111
    • 0036226063 scopus 로고    scopus 로고
    • Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
    • Rodríguez-Manzaneque M.T., Tamarit J., Bellí G., Ros J., Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 2002, 13:1109-1121.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1109-1121
    • Rodríguez-Manzaneque, M.T.1    Tamarit, J.2    Bellí, G.3    Ros, J.4    Herrero, E.5
  • 112
    • 0040932016 scopus 로고    scopus 로고
    • Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae
    • Rodríguez-Manzaneque M.T., Ros J., Cabiscol E., Sorribas A., Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19:8180-8190.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8180-8190
    • Rodríguez-Manzaneque, M.T.1    Ros, J.2    Cabiscol, E.3    Sorribas, A.4    Herrero, E.5
  • 113
    • 0033525509 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae
    • Pedrajas J.R., Kosmidou E., Miranda-Vizuete A., Gustafsson J.A., Wright A.P., Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 1999, 274:6366-6373.
    • (1999) J. Biol. Chem. , vol.274 , pp. 6366-6373
    • Pedrajas, J.R.1    Kosmidou, E.2    Miranda-Vizuete, A.3    Gustafsson, J.A.4    Wright, A.P.5    Spyrou, G.6
  • 115
    • 77954140186 scopus 로고    scopus 로고
    • Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae
    • Pedrajas J.R., Padilla C.A., McDonagh B., Bárcena J.A. Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae. Antioxid. Redox Signal. 2010, 13:249-258.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 249-258
    • Pedrajas, J.R.1    Padilla, C.A.2    McDonagh, B.3    Bárcena, J.A.4
  • 116
    • 2942724221 scopus 로고    scopus 로고
    • Dual targeting of yeast catalase A to peroxisomes and mitochondria
    • Petrova V.Y., Drescher D., Kujumdzieva A.V., Schmitt M.J. Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem. J. 2004, 380:393-400.
    • (2004) Biochem. J. , vol.380 , pp. 393-400
    • Petrova, V.Y.1    Drescher, D.2    Kujumdzieva, A.V.3    Schmitt, M.J.4
  • 118
    • 84896800834 scopus 로고    scopus 로고
    • Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1
    • Srinivasan V., Pierik A.J., Lill R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 2014, 343:1137-1140.
    • (2014) Science , vol.343 , pp. 1137-1140
    • Srinivasan, V.1    Pierik, A.J.2    Lill, R.3
  • 119
    • 84906545328 scopus 로고    scopus 로고
    • A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly
    • Schaedler T.A., Thornton J.D., Kruse I., Schwarzländer M., Meyer A.J., van Veen H.W., Balk J. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J. Biol. Chem. 2014, 289:23264-23274.
    • (2014) J. Biol. Chem. , vol.289 , pp. 23264-23274
    • Schaedler, T.A.1    Thornton, J.D.2    Kruse, I.3    Schwarzländer, M.4    Meyer, A.J.5    van Veen, H.W.6    Balk, J.7
  • 121
    • 66649106947 scopus 로고    scopus 로고
    • Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space
    • Daithankar V.N., Farrell S.R., Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry 2009, 48:4828-4837.
    • (2009) Biochemistry , vol.48 , pp. 4828-4837
    • Daithankar, V.N.1    Farrell, S.R.2    Thorpe, C.3
  • 123
    • 84887212507 scopus 로고    scopus 로고
    • A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast
    • Vernis L., Facca C., Delagoutte E., Soler N., Chanet R., Guiard B., Faye G., Baldacci G. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PLoS One 2009, 4:e4376.
    • (2009) PLoS One , vol.4 , pp. e4376
    • Vernis, L.1    Facca, C.2    Delagoutte, E.3    Soler, N.4    Chanet, R.5    Guiard, B.6    Faye, G.7    Baldacci, G.8
  • 126
    • 84907840195 scopus 로고    scopus 로고
    • Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general
    • J.R.A.D., J.M.H., Peleh V. Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general. Microb. Cell 2014, 1:81-93.
    • (2014) Microb. Cell , vol.1 , pp. 81-93
    • Peleh, V.1    Riemer, J.2    Dancis, A.3    Herrmann, J.M.4
  • 128
    • 0037189583 scopus 로고    scopus 로고
    • The C66W mutation in the deafness dystonia peptide 1 (DDP1) affects the formation of functional DDP1TIM13 complexes in the mitochondrial intermembrane space
    • Hofmann S., Rothbauer U., Mühlenbein N., Neupert W., Gerbitz K.-D., Brunner M., Bauer M.F. The C66W mutation in the deafness dystonia peptide 1 (DDP1) affects the formation of functional DDP1TIM13 complexes in the mitochondrial intermembrane space. J. Biol. Chem. 2002, 277:23287-23293.
    • (2002) J. Biol. Chem. , vol.277 , pp. 23287-23293
    • Hofmann, S.1    Rothbauer, U.2    Mühlenbein, N.3    Neupert, W.4    Gerbitz, K.-D.5    Brunner, M.6    Bauer, M.F.7
  • 130
    • 0029053451 scopus 로고
    • Superoxide radical and superoxide dismutases
    • Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64:97-112.
    • (1995) Annu. Rev. Biochem. , vol.64 , pp. 97-112
    • Fridovich, I.1
  • 131
    • 22244479388 scopus 로고    scopus 로고
    • Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis
    • Valentine J.S., Doucette P.A., Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem. 2005, 74:563-593.
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 563-593
    • Valentine, J.S.1    Doucette, P.A.2    Zittin Potter, S.3
  • 132
    • 84857063826 scopus 로고    scopus 로고
    • SOD1 and mitochondria in ALS: a dangerous liaison
    • Carrì M.T., Cozzolino M. SOD1 and mitochondria in ALS: a dangerous liaison. J. Bioenerg. Biomembr. 2011, 43:593-599.
    • (2011) J. Bioenerg. Biomembr. , vol.43 , pp. 593-599
    • Carrì, M.T.1    Cozzolino, M.2
  • 134
    • 84880144125 scopus 로고    scopus 로고
    • The involvement of GSH in the activation of human Sod1 linked to FALS in chronologically aged yeast cells
    • Brasil A.A., Belati A., Mannarino S.C., Panek A.D., Eleutherio E.C.A., Pereira M.D. The involvement of GSH in the activation of human Sod1 linked to FALS in chronologically aged yeast cells. FEMS Yeast Res. 2013, 13:433-440.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 433-440
    • Brasil, A.A.1    Belati, A.2    Mannarino, S.C.3    Panek, A.D.4    Eleutherio, E.C.A.5    Pereira, M.D.6
  • 137
    • 84867787091 scopus 로고    scopus 로고
    • Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips
    • Hagen T. Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips. Biochem. Res. Int. 2012, 2012:436981.
    • (2012) Biochem. Res. Int. , vol.2012 , pp. 436981
    • Hagen, T.1
  • 138
    • 84886414626 scopus 로고    scopus 로고
    • Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity
    • Zhuang J., Wang P., Huang X., Chen X., Kang J.-G., Hwang P.M. Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:17356-17361.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 17356-17361
    • Zhuang, J.1    Wang, P.2    Huang, X.3    Chen, X.4    Kang, J.-G.5    Hwang, P.M.6
  • 139
    • 84873446708 scopus 로고    scopus 로고
    • Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease
    • Napoli E., Wong S., Hung C., Ross-Inta C., Bomdica P., Giulivi C. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease. Hum. Mol. Genet. 2013, 22:989-1004.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 989-1004
    • Napoli, E.1    Wong, S.2    Hung, C.3    Ross-Inta, C.4    Bomdica, P.5    Giulivi, C.6
  • 140
    • 84897048042 scopus 로고    scopus 로고
    • Mitochondrial quality control in neurodegenerative diseases
    • Dupuis L. Mitochondrial quality control in neurodegenerative diseases. Biochimie 2013, 177-183.
    • (2013) Biochimie , pp. 177-183
    • Dupuis, L.1
  • 144
    • 84905869769 scopus 로고    scopus 로고
    • The role of frataxin in fission yeast iron metabolism: implications for Friedreich's ataxia
    • Wang Y., Wang Y., Marcus S., Busenlehner L.S. The role of frataxin in fission yeast iron metabolism: implications for Friedreich's ataxia. Biochim. Biophys. Acta 2014, 1840:3022-3033.
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 3022-3033
    • Wang, Y.1    Wang, Y.2    Marcus, S.3    Busenlehner, L.S.4
  • 145
    • 84905674436 scopus 로고    scopus 로고
    • Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry
    • Bridwell-Rabb J., Fox N.G., Tsai C.-L., Winn A.M., Barondeau D.P. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 2014, 53:4904-4913.
    • (2014) Biochemistry , vol.53 , pp. 4904-4913
    • Bridwell-Rabb, J.1    Fox, N.G.2    Tsai, C.-L.3    Winn, A.M.4    Barondeau, D.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.