메뉴 건너뛰기




Volumn 31, Issue , 2016, Pages 124-131

Network-based metabolic analysis and microbial community modeling

Author keywords

[No Author keywords available]

Indexed keywords

COMMUNITY STRUCTURE; ECOLOGY; IDENTIFICATION KEY; METABOLITE; MICROBIAL COMMUNITY; ORGANIZATIONAL STRUCTURE; SPECIES; BACTERIAL PHENOMENA AND FUNCTIONS; BACTERIUM; BIOLOGICAL MODEL; METABOLISM; MICROBIAL CONSORTIUM; ORGANISMAL INTERACTION; PHYSIOLOGY;

EID: 84962701672     PISSN: 13695274     EISSN: 18790364     Source Type: Journal    
DOI: 10.1016/j.mib.2016.03.008     Document Type: Review
Times cited : (77)

References (67)
  • 2
    • 84922736817 scopus 로고    scopus 로고
    • 21st century agriculture: integration of plant microbiomes for improved crop production and food security
    • Sessitsch A., Mitter B. 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb Biotechnol 2015, 8:32-33.
    • (2015) Microb Biotechnol , vol.8 , pp. 32-33
    • Sessitsch, A.1    Mitter, B.2
  • 3
    • 84893565844 scopus 로고    scopus 로고
    • Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm
    • Wang H., Masters S., Edwards M.A., Falkinham J.O., Pruden A. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm. Environ Sci Technol 2014, 48:1426-1435.
    • (2014) Environ Sci Technol , vol.48 , pp. 1426-1435
    • Wang, H.1    Masters, S.2    Edwards, M.A.3    Falkinham, J.O.4    Pruden, A.5
  • 6
    • 84930946097 scopus 로고    scopus 로고
    • Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future
    • Litchman E., Edwards K.F., Klausmeier C.A. Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front Microbiol 2015, 6.
    • (2015) Front Microbiol , pp. 6
    • Litchman, E.1    Edwards, K.F.2    Klausmeier, C.A.3
  • 7
    • 84897943640 scopus 로고    scopus 로고
    • Microbial regulation of global biogeochemical cycles
    • Rousk J., Bengtson P. Microbial regulation of global biogeochemical cycles. Terr Microbiol 2014, 5:103.
    • (2014) Terr Microbiol , vol.5 , pp. 103
    • Rousk, J.1    Bengtson, P.2
  • 9
    • 84954459052 scopus 로고    scopus 로고
    • Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China
    • Ma B., Wang H., Dsouza M., Lou J., He Y., Dai Z., Brookes P.C., Xu J., Gilbert J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 2016, 10.1038/ismej.2015.261.
    • (2016) ISME J
    • Ma, B.1    Wang, H.2    Dsouza, M.3    Lou, J.4    He, Y.5    Dai, Z.6    Brookes, P.C.7    Xu, J.8    Gilbert, J.A.9
  • 10
    • 84895918390 scopus 로고    scopus 로고
    • Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery
    • Kell D.B., Goodacre R. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today 2014, 19:171-182.
    • (2014) Drug Discov Today , vol.19 , pp. 171-182
    • Kell, D.B.1    Goodacre, R.2
  • 11
    • 84938634134 scopus 로고    scopus 로고
    • What can interaction webs tell us about species roles?
    • Sander E.L., Wootton J.T., Allesina S. What can interaction webs tell us about species roles?. PLoS Comput Biol 2015, 11:e1004330.
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004330
    • Sander, E.L.1    Wootton, J.T.2    Allesina, S.3
  • 12
    • 8444221177 scopus 로고    scopus 로고
    • Computational analysis of gene-gene interactions using multifactor dimensionality reduction
    • Moore J.H. Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 2004, 4:795-803.
    • (2004) Expert Rev Mol Diagn , vol.4 , pp. 795-803
    • Moore, J.H.1
  • 13
    • 84893672616 scopus 로고    scopus 로고
    • Network perspectives of ectomycorrhizal associations
    • Bahram M., Harend H., Tedersoo L. Network perspectives of ectomycorrhizal associations. Fungal Ecol 2014, 7:70-77.
    • (2014) Fungal Ecol , vol.7 , pp. 70-77
    • Bahram, M.1    Harend, H.2    Tedersoo, L.3
  • 14
    • 84863920287 scopus 로고    scopus 로고
    • Microbial interactions: from networks to models
    • Faust K., Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol 2012, 10:538-550.
    • (2012) Nat Rev Microbiol , vol.10 , pp. 538-550
    • Faust, K.1    Raes, J.2
  • 17
    • 84962769837 scopus 로고    scopus 로고
    • The Huttenhower Lab. [].
    • ccrepe: Compositionality Corrected by REnormalization and PErmutation | The Huttenhower Lab. []. http://huttenhower.sph.harvard.edu/ccrepe.
  • 18
    • 84862276328 scopus 로고    scopus 로고
    • Structure, function and diversity of the healthy human microbiome
    • Consortium T.H.M.P. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486:207-214.
    • (2012) Nature , vol.486 , pp. 207-214
    • Consortium, T.H.M.P.1
  • 19
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • Langfelder P., Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 2008, 9:559.
    • (2008) BMC Bioinform , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 21
    • 84865733148 scopus 로고    scopus 로고
    • Inferring correlation networks from genomic survey data
    • Friedman J., Alm E.J. Inferring correlation networks from genomic survey data. PLoS Comput Biol 2012, 8:e1002687.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002687
    • Friedman, J.1    Alm, E.J.2
  • 22
    • 84896321167 scopus 로고    scopus 로고
    • Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome
    • Bakker M.G., Schlatter D.C., Otto-Hanson L., Kinkel L.L. Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol Ecol 2014, 23:1571-1583.
    • (2014) Mol Ecol , vol.23 , pp. 1571-1583
    • Bakker, M.G.1    Schlatter, D.C.2    Otto-Hanson, L.3    Kinkel, L.L.4
  • 23
    • 84946878516 scopus 로고    scopus 로고
    • Investigating microbial co-occurrence patterns based on metagenomic compositional data
    • Ban Y., An L., Jiang H. Investigating microbial co-occurrence patterns based on metagenomic compositional data. Bioinformatics 2015, 31:3322-3329.
    • (2015) Bioinformatics , vol.31 , pp. 3322-3329
    • Ban, Y.1    An, L.2    Jiang, H.3
  • 24
    • 84943379443 scopus 로고    scopus 로고
    • CCLasso: correlation inference for compositional data through Lasso
    • Fang H., Huang C., Zhao H., Deng M. CCLasso: correlation inference for compositional data through Lasso. Bioinformatics 2015, 31:3172-3180.
    • (2015) Bioinformatics , vol.31 , pp. 3172-3180
    • Fang, H.1    Huang, C.2    Zhao, H.3    Deng, M.4
  • 27
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N., Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Ann Stat 2006, 34:1436-1462.
    • (2006) Ann Stat , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 28
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 29
    • 84962698926 scopus 로고    scopus 로고
    • American Gut. http://humanfoodproject.com/americangut.
  • 32
    • 84955208204 scopus 로고    scopus 로고
    • Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron
    • Sohm J.A., Ahlgren N.A., Thomson Z.J., Williams C., Moffett J.W., Saito M.A., Webb E.A., Rocap G. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J 2016, 10:333-345.
    • (2016) ISME J , vol.10 , pp. 333-345
    • Sohm, J.A.1    Ahlgren, N.A.2    Thomson, Z.J.3    Williams, C.4    Moffett, J.W.5    Saito, M.A.6    Webb, E.A.7    Rocap, G.8
  • 33
    • 84872568885 scopus 로고    scopus 로고
    • Efficient statistical significance approximation for local similarity analysis of high-throughput time series data
    • Xia L.C., Ai D., Cram J., Fuhrman J.A., Sun F. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics 2013, 29:230-237.
    • (2013) Bioinformatics , vol.29 , pp. 230-237
    • Xia, L.C.1    Ai, D.2    Cram, J.3    Fuhrman, J.A.4    Sun, F.5
  • 36
    • 84944889934 scopus 로고    scopus 로고
    • Spatio-temporal Bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology
    • Trifonova N., Kenny A., Maxwell D., Duplisea D., Fernandes J., Tucker A. Spatio-temporal Bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology. Ecol Inform 2015, 30:142-158.
    • (2015) Ecol Inform , vol.30 , pp. 142-158
    • Trifonova, N.1    Kenny, A.2    Maxwell, D.3    Duplisea, D.4    Fernandes, J.5    Tucker, A.6
  • 39
    • 59949086432 scopus 로고    scopus 로고
    • Minet: A R/bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer P.E., Lafitte F., Bontempi G. minet: A R/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform 2008, 9:461.
    • (2008) BMC Bioinform , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 41
    • 84926417898 scopus 로고    scopus 로고
    • Phage-bacteria network analysis and its implication for the understanding of coral disease
    • Soffer N., Zaneveld J., Vega Thurber R. Phage-bacteria network analysis and its implication for the understanding of coral disease. Environ Microbiol 2015, 17:1203-1218.
    • (2015) Environ Microbiol , vol.17 , pp. 1203-1218
    • Soffer, N.1    Zaneveld, J.2    Vega Thurber, R.3
  • 46
    • 84924662778 scopus 로고    scopus 로고
    • Resistant microbial co-occurrence patterns inferred by network topology
    • Peura S., Bertilsson S., Jones R.I., Eiler A. Resistant microbial co-occurrence patterns inferred by network topology. Appl Environ Microbiol 2015, 10.1128/AEM.03660-14.
    • (2015) Appl Environ Microbiol
    • Peura, S.1    Bertilsson, S.2    Jones, R.I.3    Eiler, A.4
  • 47
    • 84947216877 scopus 로고    scopus 로고
    • The ecology of the microbiome: networks, competition, and stability
    • Coyte K.Z., Schluter J., Foster K.R. The ecology of the microbiome: networks, competition, and stability. Science 2015, 350:663-666.
    • (2015) Science , vol.350 , pp. 663-666
    • Coyte, K.Z.1    Schluter, J.2    Foster, K.R.3
  • 48
    • 84905030166 scopus 로고    scopus 로고
    • Deciphering microbial interactions and detecting keystone species with co-occurrence networks
    • Berry D., Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Microb. Symbioses 2014, 5:219.
    • (2014) Microb. Symbioses , vol.5 , pp. 219
    • Berry, D.1    Widder, S.2
  • 50
    • 84946735654 scopus 로고    scopus 로고
    • Gene ontology consortium: going forward
    • Consortium T.G.O. Gene ontology consortium: going forward. Nucleic Acids Res 2015, 43:D1049-D1056.
    • (2015) Nucleic Acids Res , vol.43 , pp. D1049-D1056
    • Consortium, T.G.O.1
  • 52
    • 84875973063 scopus 로고    scopus 로고
    • The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
    • Agren R., Liu L., Shoaie S., Vongsangnak W., Nookaew I., Nielsen J. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput Biol 2013, 9:e1002980.
    • (2013) PLOS Comput Biol , vol.9 , pp. e1002980
    • Agren, R.1    Liu, L.2    Shoaie, S.3    Vongsangnak, W.4    Nookaew, I.5    Nielsen, J.6
  • 53
    • 84864464109 scopus 로고    scopus 로고
    • MicrobesFlux: a web platform for drafting metabolic models from the KEGG database
    • Feng X., Xu Y., Chen Y., Tang Y.J. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 2012, 6:94.
    • (2012) BMC Syst Biol , vol.6 , pp. 94
    • Feng, X.1    Xu, Y.2    Chen, Y.3    Tang, Y.J.4
  • 57
    • 33748448689 scopus 로고    scopus 로고
    • Using the topology of metabolic networks to predict viability of mutant strains
    • Wunderlich Z., Mirny L.A. Using the topology of metabolic networks to predict viability of mutant strains. Biophys J 2006, 91:2304-2311.
    • (2006) Biophys J , vol.91 , pp. 2304-2311
    • Wunderlich, Z.1    Mirny, L.A.2
  • 58
    • 77649227213 scopus 로고    scopus 로고
    • Decoupling environment-dependent and independent genetic robustness across bacterial species
    • Freilich S., Kreimer A., Borenstein E., Gophna U., Sharan R., Ruppin E. Decoupling environment-dependent and independent genetic robustness across bacterial species. PLoS Comput Biol 2010, 6:e1000690.
    • (2010) PLoS Comput Biol , vol.6 , pp. e1000690
    • Freilich, S.1    Kreimer, A.2    Borenstein, E.3    Gophna, U.4    Sharan, R.5    Ruppin, E.6
  • 59
    • 84881110826 scopus 로고    scopus 로고
    • Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules
    • Levy R., Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci U S A 2013, 110:12804-12809.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 12804-12809
    • Levy, R.1    Borenstein, E.2
  • 60
    • 0028108519 scopus 로고
    • Metabolic flux balancing: basic concepts, scientific and practical use
    • Varma A., Palsson B.O. Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 1994, 12:994-998.
    • (1994) Nat Biotechnol , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 63
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • Ibarra R.U., Edwards J.S., Palsson B.O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 2002, 420:186-189.
    • (2002) Nature , vol.420 , pp. 186-189
    • Ibarra, R.U.1    Edwards, J.S.2    Palsson, B.O.3
  • 64
    • 84861180223 scopus 로고    scopus 로고
    • OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities
    • Zomorrodi A.R., Maranas C.D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012, 8:e1002363.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002363
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 65
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R., Edwards J.S., Doyle F.J. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002, 83:1331-1340.
    • (2002) Biophys J , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.