-
2
-
-
1642351161
-
Engineering flows in small devices: microfluidics toward a lab-on-a-chip
-
Stone H.A., Stroock A.D., Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36:381-411.
-
(2004)
Annu. Rev. Fluid Mech.
, vol.36
, pp. 381-411
-
-
Stone, H.A.1
Stroock, A.D.2
Ajdari, A.3
-
3
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
5
-
-
0033988843
-
Fabrication of microfluidic systems in poly(dimethylsiloxane)
-
McDonald J.C., Duffy D.C., Anderson J.R., Chiu D.T., Wu H., Schueller O.J., et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21:27-40.
-
(2000)
Electrophoresis
, vol.21
, pp. 27-40
-
-
McDonald, J.C.1
Duffy, D.C.2
Anderson, J.R.3
Chiu, D.T.4
Wu, H.5
Schueller, O.J.6
-
6
-
-
0032403465
-
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
-
Duffy D.C., McDonald J.C., Schueller O.J.A., Whitesides G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70:4974-4984.
-
(1998)
Anal. Chem.
, vol.70
, pp. 4974-4984
-
-
Duffy, D.C.1
McDonald, J.C.2
Schueller, O.J.A.3
Whitesides, G.M.4
-
7
-
-
0034662160
-
Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping
-
Anderson J.R., Chiu D.T., Jackman R.J., Cherniavskaya O., McDonald J.C., Wu H.K., et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 2000, 72:3158-3164.
-
(2000)
Anal. Chem.
, vol.72
, pp. 3158-3164
-
-
Anderson, J.R.1
Chiu, D.T.2
Jackman, R.J.3
Cherniavskaya, O.4
McDonald, J.C.5
Wu, H.K.6
-
8
-
-
0037438528
-
Fabrication of complex three-dimensional microchannel systems in PDMS
-
Wu H.K., Odom T.W., Chiu D.T., Whitesides G.M. Fabrication of complex three-dimensional microchannel systems in PDMS. J. Am. Chem. Soc. 2003, 125:554-559.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 554-559
-
-
Wu, H.K.1
Odom, T.W.2
Chiu, D.T.3
Whitesides, G.M.4
-
9
-
-
0035984039
-
Poly(dimethylsiloxane) as a material for fabricating microfluidic devices
-
McDonald J.C., Whitesides G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35:491-499.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 491-499
-
-
McDonald, J.C.1
Whitesides, G.M.2
-
10
-
-
0036534546
-
Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing
-
McDonald J.C., Chabinyc M.L., Metallo S.J., Anderson J.R., Stroock A.D., Whitesides G.M. Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem. 2002, 74:1537-1545.
-
(2002)
Anal. Chem.
, vol.74
, pp. 1537-1545
-
-
McDonald, J.C.1
Chabinyc, M.L.2
Metallo, S.J.3
Anderson, J.R.4
Stroock, A.D.5
Whitesides, G.M.6
-
11
-
-
65349120623
-
Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite
-
Kim J., Surapaneni R., Gale B.K. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab. Chip 2009, 9:1290-1293.
-
(2009)
Lab. Chip
, vol.9
, pp. 1290-1293
-
-
Kim, J.1
Surapaneni, R.2
Gale, B.K.3
-
12
-
-
84890336466
-
PDMS lab-on-a-chip fabrication using 3D printed templates
-
Comina G., Suska A., Filippini D. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab. Chip 2014, 14:424-430.
-
(2014)
Lab. Chip
, vol.14
, pp. 424-430
-
-
Comina, G.1
Suska, A.2
Filippini, D.3
-
13
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater 2014, 26:3124-3130.
-
(2014)
Adv. Mater
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
14
-
-
0347134477
-
Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies
-
Sia S.K., Whitesides G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24:3563-3576.
-
(2003)
Electrophoresis
, vol.24
, pp. 3563-3576
-
-
Sia, S.K.1
Whitesides, G.M.2
-
16
-
-
84905376221
-
Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices
-
Halldorsson S., Lucumi E., Gomez-Sjoberg R., Fleming R.M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63:218-231.
-
(2015)
Biosens. Bioelectron.
, vol.63
, pp. 218-231
-
-
Halldorsson, S.1
Lucumi, E.2
Gomez-Sjoberg, R.3
Fleming, R.M.4
-
17
-
-
84897105671
-
Hydrogel microfluidics for the patterning of pluripotent stem cells
-
Cosson S., Lutolf M.P. Hydrogel microfluidics for the patterning of pluripotent stem cells. Sci. Rep. 2014, 4:4462.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4462
-
-
Cosson, S.1
Lutolf, M.P.2
-
18
-
-
75749134504
-
Bio-microfluidics: biomaterials and biomimetic designs
-
Domachuk P., Tsioris K., Omenetto F.G., Kaplan D.L. Bio-microfluidics: biomaterials and biomimetic designs. Adv. Mater. 2010, 22:249-260.
-
(2010)
Adv. Mater.
, vol.22
, pp. 249-260
-
-
Domachuk, P.1
Tsioris, K.2
Omenetto, F.G.3
Kaplan, D.L.4
-
19
-
-
84864204529
-
Microfluidic models of vascular functions
-
Wong K.H., Chan J.M., Kamm R.D., Tien J. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 2012, 14:205-230.
-
(2012)
Annu. Rev. Biomed. Eng.
, vol.14
, pp. 205-230
-
-
Wong, K.H.1
Chan, J.M.2
Kamm, R.D.3
Tien, J.4
-
20
-
-
34249806021
-
Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
-
Golden A.P., Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab. Chip 2007, 7:720-725.
-
(2007)
Lab. Chip
, vol.7
, pp. 720-725
-
-
Golden, A.P.1
Tien, J.2
-
21
-
-
84862197029
-
In vitro microvessels for the study of angiogenesis and thrombosis
-
Zheng Y., Chen J., Craven M., Choi N.W., Totorica S., Diaz-Santana A., et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:9342-9347.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 9342-9347
-
-
Zheng, Y.1
Chen, J.2
Craven, M.3
Choi, N.W.4
Totorica, S.5
Diaz-Santana, A.6
-
22
-
-
33644636333
-
Gelatin based microfluidic devices for cell culture
-
Paguirigan A., Beebe D.J. Gelatin based microfluidic devices for cell culture. Lab. Chip 2006, 6:407-413.
-
(2006)
Lab. Chip
, vol.6
, pp. 407-413
-
-
Paguirigan, A.1
Beebe, D.J.2
-
23
-
-
84907333316
-
Enymatic reaction-based fabrication processes of multilayer microfluidic devices made of gelatin hydrogel
-
Yajima Y., Yamada E., Yukita C., Iwase M., Yamada M., Seki M. Enymatic reaction-based fabrication processes of multilayer microfluidic devices made of gelatin hydrogel. Presented at the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, Germany 2013.
-
(2013)
Presented at the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, Germany
-
-
Yajima, Y.1
Yamada, E.2
Yukita, C.3
Iwase, M.4
Yamada, M.5
Seki, M.6
-
24
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
Nichol J.W., Koshy S.T., Bae H., Hwang C.M., Yamanlar S., Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31:5536-5544.
-
(2010)
Biomaterials
, vol.31
, pp. 5536-5544
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
Hwang, C.M.4
Yamanlar, S.5
Khademhosseini, A.6
-
25
-
-
34249810035
-
A hydrogel-based microfluidic device for the studies of directed cell migration
-
Cheng S.Y., Heilman S., Wasserman M., Archer S., Shuler M.L., Wu M. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab. Chip 2007, 7:763-769.
-
(2007)
Lab. Chip
, vol.7
, pp. 763-769
-
-
Cheng, S.Y.1
Heilman, S.2
Wasserman, M.3
Archer, S.4
Shuler, M.L.5
Wu, M.6
-
26
-
-
34249794264
-
A cell-laden microfluidic hydrogel
-
Ling Y., Rubin J., Deng Y., Huang C., Demirci U., Karp J.M., et al. A cell-laden microfluidic hydrogel. Lab. Chip 2007, 7:756-762.
-
(2007)
Lab. Chip
, vol.7
, pp. 756-762
-
-
Ling, Y.1
Rubin, J.2
Deng, Y.3
Huang, C.4
Demirci, U.5
Karp, J.M.6
-
27
-
-
26444583298
-
A microfluidic biomaterial
-
Cabodi M., Choi N.W., Gleghorn J.P., Lee C.S., Bonassar L.J., Stroock A.D. A microfluidic biomaterial. J. Am. Chem. Soc. 2005, 127:13788-13789.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 13788-13789
-
-
Cabodi, M.1
Choi, N.W.2
Gleghorn, J.P.3
Lee, C.S.4
Bonassar, L.J.5
Stroock, A.D.6
-
28
-
-
35748941950
-
Microfluidic scaffolds for tissue engineering
-
Choi N.W., Cabodi M., Held B., Gleghorn J.P., Bonassar L.J., Stroock A.D. Microfluidic scaffolds for tissue engineering. Nat. Mater. 2007, 6:908-915.
-
(2007)
Nat. Mater.
, vol.6
, pp. 908-915
-
-
Choi, N.W.1
Cabodi, M.2
Held, B.3
Gleghorn, J.P.4
Bonassar, L.J.5
Stroock, A.D.6
-
29
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
Miller J.S., Stevens K.R., Yang M.T., Baker B.M., Nguyen D.H., Cohen D.M., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11:768-774.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.H.5
Cohen, D.M.6
-
30
-
-
84867486363
-
Microfluidic hydrogels for tissue engineering
-
Huang G.Y., Zhou L.H., Zhang Q.C., Chen Y.M., Sun W., Xu F., et al. Microfluidic hydrogels for tissue engineering. Biofabrication 2011, 3:012001.
-
(2011)
Biofabrication
, vol.3
-
-
Huang, G.Y.1
Zhou, L.H.2
Zhang, Q.C.3
Chen, Y.M.4
Sun, W.5
Xu, F.6
-
31
-
-
84902550109
-
Microfluidic techniques for development of 3D vascularized tissue
-
Hasan A., Paul A., Vrana N.E., Zhao X., Memic A., Hwang Y.S., et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 2014, 35:7308-7325.
-
(2014)
Biomaterials
, vol.35
, pp. 7308-7325
-
-
Hasan, A.1
Paul, A.2
Vrana, N.E.3
Zhao, X.4
Memic, A.5
Hwang, Y.S.6
-
32
-
-
0037290140
-
Silk-based biomaterials
-
Altman G.H., Diaz F., Jakuba C., Calabro T., Horan R.L., Chen J., et al. Silk-based biomaterials. Biomaterials 2003, 24:401-416.
-
(2003)
Biomaterials
, vol.24
, pp. 401-416
-
-
Altman, G.H.1
Diaz, F.2
Jakuba, C.3
Calabro, T.4
Horan, R.L.5
Chen, J.6
-
34
-
-
84925085870
-
Impact of silk biomaterial structure on proteolysis
-
Brown J., Lu C.L., Coburn J., Kaplan D.L. Impact of silk biomaterial structure on proteolysis. Acta Biomater. 2015, 11:212-221.
-
(2015)
Acta Biomater.
, vol.11
, pp. 212-221
-
-
Brown, J.1
Lu, C.L.2
Coburn, J.3
Kaplan, D.L.4
-
35
-
-
84962636107
-
Novel enzymatically cross-linked silk fibroin hydrogel with potential applications as suppressor of angiogenesis and tumor progression
-
Ribeiro V.P., Silva-Correia J., Miranda-Gonçalves V., Le-Ping Y., Oliveira A.L., Reis R.M., et al. Novel enzymatically cross-linked silk fibroin hydrogel with potential applications as suppressor of angiogenesis and tumor progression. Presented at the 27th European Conference on Biomaterials, Kraków, POLAND 2015.
-
(2015)
Presented at the 27th European Conference on Biomaterials, Kraków, POLAND
-
-
Ribeiro, V.P.1
Silva-Correia, J.2
Miranda-Gonçalves, V.3
Le-Ping, Y.4
Oliveira, A.L.5
Reis, R.M.6
-
36
-
-
84942891573
-
Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds
-
Applegate M.B., Coburn J., Partlow B.P., Moreau J.E., Mondia J.P., Marelli B., et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc. Natl. Acad. Sci. U. S. A. 2015, 112:12052-12057.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 12052-12057
-
-
Applegate, M.B.1
Coburn, J.2
Partlow, B.P.3
Moreau, J.E.4
Mondia, J.P.5
Marelli, B.6
-
37
-
-
84955512498
-
Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study
-
e1-9
-
Brown J.E., Partlow B.P., Berman A.M., House M.D., Kaplan D.L. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study. Am. J. Obstet. Gynecol. 2016, 214:118. e1-9.
-
(2016)
Am. J. Obstet. Gynecol.
, vol.214
, pp. 118
-
-
Brown, J.E.1
Partlow, B.P.2
Berman, A.M.3
House, M.D.4
Kaplan, D.L.5
-
38
-
-
35349001231
-
Silk fibroin microfluidic devices
-
Bettinger C.J., Cyr K.M., Matsumoto A., Langer R., Borenstein J.T., Kaplan D.L. Silk fibroin microfluidic devices. Adv. Mater. 2007, 19:2847-2850.
-
(2007)
Adv. Mater.
, vol.19
, pp. 2847-2850
-
-
Bettinger, C.J.1
Cyr, K.M.2
Matsumoto, A.3
Langer, R.4
Borenstein, J.T.5
Kaplan, D.L.6
-
39
-
-
84905506847
-
Highly tunable elastomeric silk biomaterials
-
Partlow B.P., Hanna C.W., Rnjak-Kovacina J., Moreau J.E., Applegate M.B., Burke K.A., et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 2014, 24:4615-4624.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4615-4624
-
-
Partlow, B.P.1
Hanna, C.W.2
Rnjak-Kovacina, J.3
Moreau, J.E.4
Applegate, M.B.5
Burke, K.A.6
-
40
-
-
0037131390
-
Microfluidic large-scale integration
-
Thorsen T., Maerkl S.J., Quake S.R. Microfluidic large-scale integration. Science 2002, 298:580-584.
-
(2002)
Science
, vol.298
, pp. 580-584
-
-
Thorsen, T.1
Maerkl, S.J.2
Quake, S.R.3
-
41
-
-
80053387476
-
Materials fabrication from Bombyx mori silk fibroin
-
Rockwood D.N., Preda R.C., Yucel T., Wang X., Lovett M.L., Kaplan D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6:1612-1631.
-
(2011)
Nat. Protoc.
, vol.6
, pp. 1612-1631
-
-
Rockwood, D.N.1
Preda, R.C.2
Yucel, T.3
Wang, X.4
Lovett, M.L.5
Kaplan, D.L.6
-
42
-
-
33748778466
-
Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy
-
Hu X., Kaplan D., Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 2006, 39:6161-6170.
-
(2006)
Macromolecules
, vol.39
, pp. 6161-6170
-
-
Hu, X.1
Kaplan, D.2
Cebe, P.3
-
43
-
-
0034615958
-
Monolithic microfabricated valves and pumps by multilayer soft lithography
-
Unger M.A., Chou H.P., Thorsen T., Scherer A., Quake S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288:113-116.
-
(2000)
Science
, vol.288
, pp. 113-116
-
-
Unger, M.A.1
Chou, H.P.2
Thorsen, T.3
Scherer, A.4
Quake, S.R.5
-
44
-
-
0035824376
-
Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature
-
Zhou Y., Chen W., Itoh H., Naka K., Ni Q., Yamane H., et al. Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature. Chem. Commun. (Camb) 2001, 2518-2519.
-
(2001)
Chem. Commun. (Camb)
, pp. 2518-2519
-
-
Zhou, Y.1
Chen, W.2
Itoh, H.3
Naka, K.4
Ni, Q.5
Yamane, H.6
-
45
-
-
80052333417
-
Effect of processing on silk-based biomaterials: reproducibility and biocompatibility
-
Wray L.S., Hu X., Gallego J., Georgakoudi I., Omenetto F.G., Schmidt D., et al. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99:89-101.
-
(2011)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.99
, pp. 89-101
-
-
Wray, L.S.1
Hu, X.2
Gallego, J.3
Georgakoudi, I.4
Omenetto, F.G.5
Schmidt, D.6
-
46
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677-689.
-
(2006)
Cell
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
Discher, D.E.4
-
47
-
-
67649195858
-
Control of stem cell fate by physical interactions with the extracellular matrix
-
Guilak F., Cohen D.M., Estes B.T., Gimble J.M., Liedtke W., Chen C.S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5:17-26.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 17-26
-
-
Guilak, F.1
Cohen, D.M.2
Estes, B.T.3
Gimble, J.M.4
Liedtke, W.5
Chen, C.S.6
-
48
-
-
27944497333
-
Tissue cells feel and respond to the stiffness of their substrate
-
Discher D.E., Janmey P., Wang Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310:1139-1143.
-
(2005)
Science
, vol.310
, pp. 1139-1143
-
-
Discher, D.E.1
Janmey, P.2
Wang, Y.L.3
-
49
-
-
66249146049
-
Complexity in biomaterials for tissue engineering
-
Place E.S., Evans N.D., Stevens M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8:457-470.
-
(2009)
Nat. Mater.
, vol.8
, pp. 457-470
-
-
Place, E.S.1
Evans, N.D.2
Stevens, M.M.3
-
50
-
-
84925134881
-
Injectable silk-polyethylene glycol hydrogels
-
Wang X., Partlow B., Liu J., Zheng Z., Su B., Wang Y., et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 2015, 12:51-61.
-
(2015)
Acta Biomater.
, vol.12
, pp. 51-61
-
-
Wang, X.1
Partlow, B.2
Liu, J.3
Zheng, Z.4
Su, B.5
Wang, Y.6
-
51
-
-
79955877901
-
Regulation of silk material structure by temperature-controlled water vapor annealing
-
Hu X., Shmelev K., Sun L., Gil E.S., Park S.H., Cebe P., et al. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 2011, 12:1686-1696.
-
(2011)
Biomacromolecules
, vol.12
, pp. 1686-1696
-
-
Hu, X.1
Shmelev, K.2
Sun, L.3
Gil, E.S.4
Park, S.H.5
Cebe, P.6
-
52
-
-
42249085401
-
Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation
-
Murphy A.R., St John P., Kaplan D.L. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 2008, 29:2829-2838.
-
(2008)
Biomaterials
, vol.29
, pp. 2829-2838
-
-
Murphy, A.R.1
St John, P.2
Kaplan, D.L.3
-
53
-
-
66149109614
-
Stabilization of enzymes in silk films
-
Lu S., Wang X., Lu Q., Hu X., Uppal N., Omenetto F.G., et al. Stabilization of enzymes in silk films. Biomacromolecules 2009, 10:1032-1042.
-
(2009)
Biomacromolecules
, vol.10
, pp. 1032-1042
-
-
Lu, S.1
Wang, X.2
Lu, Q.3
Hu, X.4
Uppal, N.5
Omenetto, F.G.6
-
55
-
-
34648834682
-
The third dimension bridges the gap between cell culture and live tissue
-
Pampaloni F., Reynaud E.G., Stelzer E.H. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007, 8:839-845.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 839-845
-
-
Pampaloni, F.1
Reynaud, E.G.2
Stelzer, E.H.3
-
56
-
-
0030799567
-
Survival of human epidermal keratinocytes after short-duration high temperature: synthesis of HSP70 and IL-8
-
Bowman P.D., Schuschereba S.T., Lawlor D.F., Gilligan G.R., Mata J.R., DeBaere D.R. Survival of human epidermal keratinocytes after short-duration high temperature: synthesis of HSP70 and IL-8. Am. J. Physiol. 1997, 272:C1988-C1994.
-
(1997)
Am. J. Physiol.
, vol.272
, pp. C1988-C1994
-
-
Bowman, P.D.1
Schuschereba, S.T.2
Lawlor, D.F.3
Gilligan, G.R.4
Mata, J.R.5
DeBaere, D.R.6
-
57
-
-
84887520275
-
The effect of temperature on the viability of human mesenchymal stem cells
-
Reissis Y., Garcia-Gareta E., Korda M., Blunn G.W., Hua J. The effect of temperature on the viability of human mesenchymal stem cells. Stem Cell Res. Ther. 2013, 4:139.
-
(2013)
Stem Cell Res. Ther.
, vol.4
, pp. 139
-
-
Reissis, Y.1
Garcia-Gareta, E.2
Korda, M.3
Blunn, G.W.4
Hua, J.5
-
58
-
-
84901387833
-
Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation
-
Zamora-Mora V., Velasco D., Hernandez R., Mijangos C., Kumacheva E. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation. Carbohydr. Polym. 2014, 111:348-355.
-
(2014)
Carbohydr. Polym.
, vol.111
, pp. 348-355
-
-
Zamora-Mora, V.1
Velasco, D.2
Hernandez, R.3
Mijangos, C.4
Kumacheva, E.5
-
59
-
-
67651172783
-
Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices
-
Sung K.E., Su G., Pehlke C., Trier S.M., Eliceiri K.W., Keely P.J., et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials 2009, 30:4833-4841.
-
(2009)
Biomaterials
, vol.30
, pp. 4833-4841
-
-
Sung, K.E.1
Su, G.2
Pehlke, C.3
Trier, S.M.4
Eliceiri, K.W.5
Keely, P.J.6
-
60
-
-
84887195900
-
Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering
-
El-Fiqi A., Lee J.H., Lee E.J., Kim H.W. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013, 9:9508-9521.
-
(2013)
Acta Biomater.
, vol.9
, pp. 9508-9521
-
-
El-Fiqi, A.1
Lee, J.H.2
Lee, E.J.3
Kim, H.W.4
-
61
-
-
84898677725
-
Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal
-
Xing Q., Yates K., Vogt C., Qian Z., Frost M.C., Zhao F. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci. Rep. 2014, 4:4706.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4706
-
-
Xing, Q.1
Yates, K.2
Vogt, C.3
Qian, Z.4
Frost, M.C.5
Zhao, F.6
-
62
-
-
70349083021
-
Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells
-
Sabnis A., Rahimi M., Chapman C., Nguyen K.T. Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J. Biomed. Mater. Res. A 2009, 91:52-59.
-
(2009)
J. Biomed. Mater. Res. A
, vol.91
, pp. 52-59
-
-
Sabnis, A.1
Rahimi, M.2
Chapman, C.3
Nguyen, K.T.4
-
63
-
-
4744345810
-
Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation
-
Williams C.G., Malik A.N., Kim T.K., Manson P.N., Elisseeff J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26:1211-1218.
-
(2005)
Biomaterials
, vol.26
, pp. 1211-1218
-
-
Williams, C.G.1
Malik, A.N.2
Kim, T.K.3
Manson, P.N.4
Elisseeff, J.H.5
-
64
-
-
84862646170
-
Extracellular-matrix tethering regulates stem-cell fate
-
Trappmann B., Gautrot J.E., Connelly J.T., Strange D.G., Li Y., Oyen M.L., et al Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 2012, 11:642-649.
-
(2012)
Nat. Mater.
, vol.11
, pp. 642-649
-
-
Trappmann, B.1
Gautrot, J.E.2
Connelly, J.T.3
Strange, D.G.4
Li, Y.5
Oyen, M.L.6
-
65
-
-
84871150286
-
Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve
-
Palchesko R.N., Zhang L., Sun Y., Feinberg A.W. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 2012, 7:e51499.
-
(2012)
PLoS One
, vol.7
-
-
Palchesko, R.N.1
Zhang, L.2
Sun, Y.3
Feinberg, A.W.4
-
66
-
-
67349108739
-
The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels
-
Buckley C.T., Thorpe S.D., O'Brien F.J., Robinson A.J., Kelly D.J. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J. Mech. Behav. Biomed. Mater. 2009, 2:512-521.
-
(2009)
J. Mech. Behav. Biomed. Mater.
, vol.2
, pp. 512-521
-
-
Buckley, C.T.1
Thorpe, S.D.2
O'Brien, F.J.3
Robinson, A.J.4
Kelly, D.J.5
-
67
-
-
80052328814
-
Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels
-
Roberts J.J., Earnshaw A., Ferguson V.L., Bryant S.J. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. J. Biomed. Mater Res. B Appl. Biomater. 2011, 99:158-169.
-
(2011)
J. Biomed. Mater Res. B Appl. Biomater.
, vol.99
, pp. 158-169
-
-
Roberts, J.J.1
Earnshaw, A.2
Ferguson, V.L.3
Bryant, S.J.4
-
68
-
-
33747147839
-
Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications
-
Ahearne M., Yang Y., El Haj A.J., Then K.Y., Liu K.K. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interface 2005, 2:455-463.
-
(2005)
J. R. Soc. Interface
, vol.2
, pp. 455-463
-
-
Ahearne, M.1
Yang, Y.2
El Haj, A.J.3
Then, K.Y.4
Liu, K.K.5
-
69
-
-
84900811047
-
Mechanical properties of alginate hydrogels manufactured using external gelation
-
Kaklamani G., Cheneler D., Grover L.M., Adams M.J., Bowen J. Mechanical properties of alginate hydrogels manufactured using external gelation. J. Mech. Behav. Biomed. Mater. 2014, 36:135-142.
-
(2014)
J. Mech. Behav. Biomed. Mater.
, vol.36
, pp. 135-142
-
-
Kaklamani, G.1
Cheneler, D.2
Grover, L.M.3
Adams, M.J.4
Bowen, J.5
-
70
-
-
78649318607
-
Investigation of the material properties of alginate for the development of hydrogel repair of dura mater
-
Nunamaker E.A., Otto K.J., Kipke D.R. Investigation of the material properties of alginate for the development of hydrogel repair of dura mater. J. Mech. Behav. Biomed. Mater. 2011, 4:16-33.
-
(2011)
J. Mech. Behav. Biomed. Mater.
, vol.4
, pp. 16-33
-
-
Nunamaker, E.A.1
Otto, K.J.2
Kipke, D.R.3
-
71
-
-
77958093432
-
Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy
-
Raub C.B., Putnam A.J., Tromberg B.J., George S.C. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater. 2010, 6:4657-4665.
-
(2010)
Acta Biomater.
, vol.6
, pp. 4657-4665
-
-
Raub, C.B.1
Putnam, A.J.2
Tromberg, B.J.3
George, S.C.4
-
72
-
-
0036102097
-
Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure
-
Roeder B.A., Kokini K., Sturgis J.E., Robinson J.P., Voytik-Harbin S.L. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 2002, 124:214-222.
-
(2002)
J. Biomech. Eng.
, vol.124
, pp. 214-222
-
-
Roeder, B.A.1
Kokini, K.2
Sturgis, J.E.3
Robinson, J.P.4
Voytik-Harbin, S.L.5
-
74
-
-
79952847271
-
Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation
-
Achilli M., Mantovani D. Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers 2010, 2:664-680.
-
(2010)
Polymers
, vol.2
, pp. 664-680
-
-
Achilli, M.1
Mantovani, D.2
-
75
-
-
4143088311
-
Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin
-
McDermott M.K., Chen T., Williams C.M., Markley K.M., Payne G.F. Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 2004, 5:1270-1279.
-
(2004)
Biomacromolecules
, vol.5
, pp. 1270-1279
-
-
McDermott, M.K.1
Chen, T.2
Williams, C.M.3
Markley, K.M.4
Payne, G.F.5
-
76
-
-
0344352463
-
Protein release from alginate matrices
-
Wee S., Gombotz W.R. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 1998, 31:267-285.
-
(1998)
Adv. Drug Deliv. Rev.
, vol.31
, pp. 267-285
-
-
Wee, S.1
Gombotz, W.R.2
-
77
-
-
79953852870
-
Degradation mechanism and control of silk fibroin
-
Lu Q., Zhang B., Li M., Zuo B., Kaplan D.L., Huang Y., et al. Degradation mechanism and control of silk fibroin. Biomacromolecules 2011, 12:1080-1086.
-
(2011)
Biomacromolecules
, vol.12
, pp. 1080-1086
-
-
Lu, Q.1
Zhang, B.2
Li, M.3
Zuo, B.4
Kaplan, D.L.5
Huang, Y.6
-
78
-
-
11144314133
-
In vitro degradation of silk fibroin
-
Horan R.L., Antle K., Collette A.L., Wang Y., Huang J., Moreau J.E., et al. In vitro degradation of silk fibroin. Biomaterials 2005, 26:3385-3393.
-
(2005)
Biomaterials
, vol.26
, pp. 3385-3393
-
-
Horan, R.L.1
Antle, K.2
Collette, A.L.3
Wang, Y.4
Huang, J.5
Moreau, J.E.6
-
79
-
-
45049084300
-
In vivo degradation of three-dimensional silk fibroin scaffolds
-
Wang Y., Rudym D.D., Walsh A., Abrahamsen L., Kim H.J., Kim H.S., et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008, 29:3415-3428.
-
(2008)
Biomaterials
, vol.29
, pp. 3415-3428
-
-
Wang, Y.1
Rudym, D.D.2
Walsh, A.3
Abrahamsen, L.4
Kim, H.J.5
Kim, H.S.6
-
80
-
-
10044274310
-
Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin
-
Kim U.J., Park J., Kim H.J., Wada M., Kaplan D.L. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005, 26:2775-2785.
-
(2005)
Biomaterials
, vol.26
, pp. 2775-2785
-
-
Kim, U.J.1
Park, J.2
Kim, H.J.3
Wada, M.4
Kaplan, D.L.5
-
81
-
-
77649269324
-
Autologous engineering of cartilage
-
Emans P.J., van Rhijn L.W., Welting T.J., Cremers A., Wijnands N., Spaapen F., et al. Autologous engineering of cartilage. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:3418-3423.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 3418-3423
-
-
Emans, P.J.1
van Rhijn, L.W.2
Welting, T.J.3
Cremers, A.4
Wijnands, N.5
Spaapen, F.6
-
82
-
-
15844402830
-
Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose
-
Shoichet M.S., Li R.H., White M.L., Winn S.R. Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol. Bioeng. 1996, 50:374-381.
-
(1996)
Biotechnol. Bioeng.
, vol.50
, pp. 374-381
-
-
Shoichet, M.S.1
Li, R.H.2
White, M.L.3
Winn, S.R.4
-
83
-
-
33846459468
-
Templated agarose scaffolds support linear axonal regeneration
-
Stokols S., Sakamoto J., Breckon C., Holt T., Weiss J., Tuszynski M.H. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng. 2006, 12:2777-2787.
-
(2006)
Tissue Eng.
, vol.12
, pp. 2777-2787
-
-
Stokols, S.1
Sakamoto, J.2
Breckon, C.3
Holt, T.4
Weiss, J.5
Tuszynski, M.H.6
-
84
-
-
61549109884
-
Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
-
Jeon O., Bouhadir K.H., Mansour J.M., Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009, 30:2724-2734.
-
(2009)
Biomaterials
, vol.30
, pp. 2724-2734
-
-
Jeon, O.1
Bouhadir, K.H.2
Mansour, J.M.3
Alsberg, E.4
-
85
-
-
10444277381
-
Controlling degradation of hydrogels via the size of cross-linked junctions
-
Kong H.J., Alsberg E., Kaigler D., Lee K.Y., Mooney D.J. Controlling degradation of hydrogels via the size of cross-linked junctions. Adv. Mater. 2004, 16:1917-1921.
-
(2004)
Adv. Mater.
, vol.16
, pp. 1917-1921
-
-
Kong, H.J.1
Alsberg, E.2
Kaigler, D.3
Lee, K.Y.4
Mooney, D.J.5
-
86
-
-
5044239649
-
Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution
-
Kong H.J., Kaigler D., Kim K., Mooney D.J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 2004, 5:1720-1727.
-
(2004)
Biomacromolecules
, vol.5
, pp. 1720-1727
-
-
Kong, H.J.1
Kaigler, D.2
Kim, K.3
Mooney, D.J.4
-
87
-
-
84956582687
-
Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair
-
Shahriari D., Koffler J., Lynam D.A., Tuszynski M.H., Sakamoto J.S. Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. J. Biomed. Mater. Res. A 2015, 104:611-619.
-
(2015)
J. Biomed. Mater. Res. A
, vol.104
, pp. 611-619
-
-
Shahriari, D.1
Koffler, J.2
Lynam, D.A.3
Tuszynski, M.H.4
Sakamoto, J.S.5
-
88
-
-
70449718933
-
Collagen and glycopolymer based hydrogel for potential corneal application
-
Deng C., Li F., Hackett J.M., Chaudhry S.H., Toll F.N., Toye B., et al. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater. 2010, 6:187-194.
-
(2010)
Acta Biomater.
, vol.6
, pp. 187-194
-
-
Deng, C.1
Li, F.2
Hackett, J.M.3
Chaudhry, S.H.4
Toll, F.N.5
Toye, B.6
-
89
-
-
10744232100
-
Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices
-
Angele P., Abke J., Kujat R., Faltermeier H., Schumann D., Nerlich M., et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 2004, 25:2831-2841.
-
(2004)
Biomaterials
, vol.25
, pp. 2831-2841
-
-
Angele, P.1
Abke, J.2
Kujat, R.3
Faltermeier, H.4
Schumann, D.5
Nerlich, M.6
-
90
-
-
38349052184
-
Recombinant human collagen for tissue engineered corneal substitutes
-
Liu W., Merrett K., Griffith M., Fagerholm P., Dravida S., Heyne B., et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 2008, 29:1147-1158.
-
(2008)
Biomaterials
, vol.29
, pp. 1147-1158
-
-
Liu, W.1
Merrett, K.2
Griffith, M.3
Fagerholm, P.4
Dravida, S.5
Heyne, B.6
-
91
-
-
0032482156
-
Protein release from gelatin matrices
-
Ikada Y., Tabata Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 1998, 31:287-301.
-
(1998)
Adv. Drug Deliv. Rev.
, vol.31
, pp. 287-301
-
-
Ikada, Y.1
Tabata, Y.2
-
92
-
-
77958029086
-
Unusual degradation behavior of citric acid-crosslinked gelatin in vitro and in vivo
-
Inoue M., Sasaki M., Taguchi T. Unusual degradation behavior of citric acid-crosslinked gelatin in vitro and in vivo. Polym. Degrad. Stab. 2010, 95:2088-2092.
-
(2010)
Polym. Degrad. Stab.
, vol.95
, pp. 2088-2092
-
-
Inoue, M.1
Sasaki, M.2
Taguchi, T.3
-
93
-
-
0028111654
-
Enhanced vascularization and tissue granulation by basic fibroblast growth-factor impregnated in gelatin hydrogels
-
Tabata Y., Hijikata S., Ikada Y. Enhanced vascularization and tissue granulation by basic fibroblast growth-factor impregnated in gelatin hydrogels. J. Control. Release 1994, 31:189-199.
-
(1994)
J. Control. Release
, vol.31
, pp. 189-199
-
-
Tabata, Y.1
Hijikata, S.2
Ikada, Y.3
-
94
-
-
84861143986
-
Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels
-
Chen Y.C., Lin R.Z., Qi H., Yang Y., Bae H., Melero-Martin J.M., et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 2012, 22:2027-2039.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 2027-2039
-
-
Chen, Y.C.1
Lin, R.Z.2
Qi, H.3
Yang, Y.4
Bae, H.5
Melero-Martin, J.M.6
-
95
-
-
84891738542
-
Injectable, porous, and cell-responsive gelatin cryogels
-
Koshy S.T., Ferrante T.C., Lewin S.A., Mooney D.J. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 2014, 35:2477-2487.
-
(2014)
Biomaterials
, vol.35
, pp. 2477-2487
-
-
Koshy, S.T.1
Ferrante, T.C.2
Lewin, S.A.3
Mooney, D.J.4
-
96
-
-
84885394762
-
Facile functionalization of PDMS elastomer surfaces using thiol-ene click chemistry
-
Zhang J., Chen Y., Brook M.A. Facile functionalization of PDMS elastomer surfaces using thiol-ene click chemistry. Langmuir 2013, 29:12432-12442.
-
(2013)
Langmuir
, vol.29
, pp. 12432-12442
-
-
Zhang, J.1
Chen, Y.2
Brook, M.A.3
-
97
-
-
84885453476
-
Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells
-
Kuddannaya S., Chuah Y.J., Lee M.H., Menon N.V., Kang Y., Zhang Y. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013, 5:9777-9784.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 9777-9784
-
-
Kuddannaya, S.1
Chuah, Y.J.2
Lee, M.H.3
Menon, N.V.4
Kang, Y.5
Zhang, Y.6
-
98
-
-
0035199543
-
Functionalized silk-based biomaterials for bone formation
-
Sofia S., McCarthy M.B., Gronowicz G., Kaplan D.L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 2001, 54:139-148.
-
(2001)
J. Biomed. Mater. Res.
, vol.54
, pp. 139-148
-
-
Sofia, S.1
McCarthy, M.B.2
Gronowicz, G.3
Kaplan, D.L.4
-
99
-
-
78650758312
-
Functionalization of silk fibroin with NeutrAvidin and biotin
-
Wang X., Kaplan D.L. Functionalization of silk fibroin with NeutrAvidin and biotin. Macromol. Biosci. 2011, 11:100-110.
-
(2011)
Macromol. Biosci.
, vol.11
, pp. 100-110
-
-
Wang, X.1
Kaplan, D.L.2
-
100
-
-
84941749923
-
Biofunctionalization of hydrogels for engineering the cellular microenvironment
-
Elsevier Inc. J. Karp, W. Zhao (Eds.)
-
Bhagawati M., Kumar S. Biofunctionalization of hydrogels for engineering the cellular microenvironment. Micro- and Nanoengineering of the Cell Surface 2014, Elsevier Inc. J. Karp, W. Zhao (Eds.).
-
(2014)
Micro- and Nanoengineering of the Cell Surface
-
-
Bhagawati, M.1
Kumar, S.2
-
101
-
-
80052554346
-
Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels
-
Jeon O., Powell C., Solorio L.D., Krebs M.D., Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control Release 2011, 154:258-266.
-
(2011)
J. Control Release
, vol.154
, pp. 258-266
-
-
Jeon, O.1
Powell, C.2
Solorio, L.D.3
Krebs, M.D.4
Alsberg, E.5
-
102
-
-
9644266763
-
Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve
-
Ohta M., Suzuki Y., Chou H., Ishikawa N., Suzuki S., Tanihara M., et al. Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. J. Biomed. Mater. Res. A 2004, 71:661-668.
-
(2004)
J. Biomed. Mater. Res. A
, vol.71
, pp. 661-668
-
-
Ohta, M.1
Suzuki, Y.2
Chou, H.3
Ishikawa, N.4
Suzuki, S.5
Tanihara, M.6
-
104
-
-
78650401468
-
Amine functionalization of collagen matrices with multifunctional polyethylene glycol systems
-
Ward J., Kelly J., Wang W., Zeugolis D.I., Pandit A. Amine functionalization of collagen matrices with multifunctional polyethylene glycol systems. Biomacromolecules 2010, 11:3093-3101.
-
(2010)
Biomacromolecules
, vol.11
, pp. 3093-3101
-
-
Ward, J.1
Kelly, J.2
Wang, W.3
Zeugolis, D.I.4
Pandit, A.5
-
105
-
-
33748916876
-
Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering
-
Duan X., McLaughlin C., Griffith M., Sheardown H. Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 2007, 28:78-88.
-
(2007)
Biomaterials
, vol.28
, pp. 78-88
-
-
Duan, X.1
McLaughlin, C.2
Griffith, M.3
Sheardown, H.4
-
106
-
-
84904872358
-
Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation
-
Lai J.Y. Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids Surf. B Biointerfaces 2014, 122:277-286.
-
(2014)
Colloids Surf. B Biointerfaces
, vol.122
, pp. 277-286
-
-
Lai, J.Y.1
-
108
-
-
84966631713
-
Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing
-
Stankova N.E., Atanasov P.A., Nikov R.G., Nikov R.G., Nedyalkov N.N., Stoyanchov T.R., et al. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing. Appl. Surf. Sci. 2015, 9:2015.
-
(2015)
Appl. Surf. Sci.
, vol.9
, pp. 2015
-
-
Stankova, N.E.1
Atanasov, P.A.2
Nikov, R.G.3
Nikov, R.G.4
Nedyalkov, N.N.5
Stoyanchov, T.R.6
-
109
-
-
39449102813
-
Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication
-
Cai D.K., Neyer A., Kuckuk R., Heise H.M. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt. Mater. 2008, 30:1157-1161.
-
(2008)
Opt. Mater.
, vol.30
, pp. 1157-1161
-
-
Cai, D.K.1
Neyer, A.2
Kuckuk, R.3
Heise, H.M.4
-
110
-
-
84935847787
-
Moisture-responsive films consisting of luminescent polyoxometalates and agarose
-
Qiu Y.F., Liu H., Liu J.X., Zhang C., Ma Z., Hu P.A., et al. Moisture-responsive films consisting of luminescent polyoxometalates and agarose. J. Mater. Chem. C 2015, 3:6322-6328.
-
(2015)
J. Mater. Chem. C
, vol.3
, pp. 6322-6328
-
-
Qiu, Y.F.1
Liu, H.2
Liu, J.X.3
Zhang, C.4
Ma, Z.5
Hu, P.A.6
-
111
-
-
84924955990
-
Microbial trench-based optofluidic system for reagentless determination of phenolic compounds
-
Sanahuja D., Gimenez-Gomez P., Vigues N., Ackermann T.N., Guerrero-Navarro A.E., Pujol-Vila F., et al. Microbial trench-based optofluidic system for reagentless determination of phenolic compounds. Lab. Chip 2015, 15:1717-1726.
-
(2015)
Lab. Chip
, vol.15
, pp. 1717-1726
-
-
Sanahuja, D.1
Gimenez-Gomez, P.2
Vigues, N.3
Ackermann, T.N.4
Guerrero-Navarro, A.E.5
Pujol-Vila, F.6
-
112
-
-
84948464538
-
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
-
Hribar K.C., Meggs K., Liu J., Zhu W., Qu X., Chen S. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci. Rep. 2015, 5:17203.
-
(2015)
Sci. Rep.
, vol.5
, pp. 17203
-
-
Hribar, K.C.1
Meggs, K.2
Liu, J.3
Zhu, W.4
Qu, X.5
Chen, S.6
-
113
-
-
84888312422
-
Optical properties of free-standing gelatin-Si nanoparticle composite films and gelatin-Si-Au nanoparticle composite films
-
Shi L., Yu T., Sun L., Pi X., Peng X. Optical properties of free-standing gelatin-Si nanoparticle composite films and gelatin-Si-Au nanoparticle composite films. Phys. Chem. Chem. Phys. 2013, 15:20140-20146.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 20140-20146
-
-
Shi, L.1
Yu, T.2
Sun, L.3
Pi, X.4
Peng, X.5
-
114
-
-
84888638734
-
Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
-
Shin S.R., Aghaei-Ghareh-Bolagh B., Dang T.T., Topkaya S.N., Gao X., Yang S.Y., et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv. Mater. 2013, 25:6385-6391.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6385-6391
-
-
Shin, S.R.1
Aghaei-Ghareh-Bolagh, B.2
Dang, T.T.3
Topkaya, S.N.4
Gao, X.5
Yang, S.Y.6
-
115
-
-
0344737989
-
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices
-
Lee J.N., Park C., Whitesides G.M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75:6544-6554.
-
(2003)
Anal. Chem.
, vol.75
, pp. 6544-6554
-
-
Lee, J.N.1
Park, C.2
Whitesides, G.M.3
-
116
-
-
84904252976
-
Long-term stable hydrogels for biorelevant dissolution testing of drug-eluting stents
-
Semmling B., Nagel S., Sternberg K., Weitschies W., Seidlitz A. Long-term stable hydrogels for biorelevant dissolution testing of drug-eluting stents. J. Pharm. Technol. Drug Res. 2013, 2. 10.7243/2050-120X-2-19.
-
(2013)
J. Pharm. Technol. Drug Res.
, vol.2
-
-
Semmling, B.1
Nagel, S.2
Sternberg, K.3
Weitschies, W.4
Seidlitz, A.5
-
117
-
-
84927659388
-
Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue
-
Visser J., Levett P.A., te Moller N.C., Besems J., Boere K.W., van Rijen M.H., et al. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng. Part A 2015, 21:1195-1206.
-
(2015)
Tissue Eng. Part A
, vol.21
, pp. 1195-1206
-
-
Visser, J.1
Levett, P.A.2
te Moller, N.C.3
Besems, J.4
Boere, K.W.5
van Rijen, M.H.6
|