메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 77-101

Organization and Regulation of Mitochondrial Protein Synthesis

Author keywords

Biogenesis; Evolution; Mitochondria; Mitoribosome; Translation

Indexed keywords

CYTOCHROME B; CYTOCHROME C OXIDASE; CYTOCHROME OXIDASE SUBUNIT 1; MITOCHONDRIAL PROTEIN; POLYPEPTIDE; UNCLASSIFIED DRUG; MITOCHONDRIAL DNA;

EID: 84962371949     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014334     Document Type: Article
Times cited : (209)

References (152)
  • 1
    • 0014070709 scopus 로고
    • On the origin of mitosing cells
    • Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14:255-74
    • (1967) J. Theor. Biol. , vol.14 , pp. 255-274
    • Sagan, L.1
  • 2
    • 84864319440 scopus 로고    scopus 로고
    • Mechanism of protein biosynthesis in mammalian mitochondria
    • Christian BE, Spremulli LL. 2012. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim. Biophys. Acta 1819:1035-54
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 1035-1054
    • Christian, B.E.1    Spremulli, L.L.2
  • 5
    • 84923531787 scopus 로고    scopus 로고
    • Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease
    • Powell CA, Nicholls TJ, Minczuk M. 2015. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front. Genet. 6:79
    • (2015) Front. Genet. , vol.6 , pp. 79
    • Powell, C.A.1    Nicholls, T.J.2    Minczuk, M.3
  • 6
    • 84905820302 scopus 로고    scopus 로고
    • Making proteins in the powerhouse
    • Hällberg BM, Larsson NG. 2014. Making proteins in the powerhousE. Cell Metab. 20:226-40
    • (2014) Cell Metab. , vol.20 , pp. 226-240
    • Hällberg, B.M.1    Larsson, N.G.2
  • 10
    • 0024283319 scopus 로고
    • Mitochondrial transformation in yeast by bombardment with microprojectiles
    • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA. 1988. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538-41
    • (1988) Science , vol.240 , pp. 1538-1541
    • Johnston, S.A.1    Anziano, P.Q.2    Shark, K.3    Sanford, J.C.4    Butow, R.A.5
  • 11
    • 0009461449 scopus 로고
    • Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA
    • Fox TD, Sanford JC, McMullin TW. 1988. Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. PNAS 85:7288-92
    • (1988) PNAS , vol.85 , pp. 7288-7292
    • Fox, T.D.1    Sanford, J.C.2    McMullin, T.W.3
  • 12
    • 0344861878 scopus 로고    scopus 로고
    • Mitochondrial genomes: Anything goes
    • Burger G, Gray MW, Lang BF. 2003. Mitochondrial genomes: Anything goes. Trends Genet. 19:709-16
    • (2003) Trends Genet. , vol.19 , pp. 709-716
    • Burger, G.1    Gray, M.W.2    Lang, B.F.3
  • 14
    • 84914688940 scopus 로고    scopus 로고
    • Genome sequence of a 45, 000-year-old modern human from western Siberia
    • Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, et al. 2014. Genome sequence of a 45, 000-year-old modern human from western Siberia. Nature 514:445-49
    • (2014) Nature , vol.514 , pp. 445-449
    • Fu, Q.1    Li, H.2    Moorjani, P.3    Jay, F.4    Slepchenko, S.M.5
  • 15
    • 0036606915 scopus 로고    scopus 로고
    • Base composition bias might result from competition for metabolic resources
    • Rocha EP, Danchin A. 2002. Base composition bias might result from competition for metabolic resources. Trends Genet. 18:291-94
    • (2002) Trends Genet. , vol.18 , pp. 291-294
    • Rocha, E.P.1    Danchin, A.2
  • 16
    • 0028807395 scopus 로고
    • Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA
    • Martin AP. 1995. Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol. Biol. Evol. 12:1124-31
    • (1995) Mol. Biol. Evol. , vol.12 , pp. 1124-1131
    • Martin, A.P.1
  • 17
    • 0022532186 scopus 로고
    • Why mitochondria need a genome
    • von Heijne G. 1986. Why mitochondria need a genome. FEBS Lett. 198:1-4
    • (1986) FEBS Lett. , vol.198 , pp. 1-4
    • Von Heijne, G.1
  • 18
    • 0028932673 scopus 로고
    • Limitations to in vivo import of hydrophobic proteins into yeast mitochondria: The case of a cytoplasmically synthesized apocytochrome b
    • Claros MG, Perea J, Shu YM, Samatey FA, Popot JL, Jacq C. 1995. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria: The case of a cytoplasmically synthesized apocytochrome b. Eur. J. Biochem. 228:762-71
    • (1995) Eur. J. Biochem. , vol.228 , pp. 762-771
    • Claros, M.G.1    Perea, J.2    Shu, Y.M.3    Samatey, F.A.4    Popot, J.L.5    Jacq, C.6
  • 19
    • 0037295044 scopus 로고    scopus 로고
    • Why chloroplasts and mitochondria contain genomes
    • Allen JF. 2003. Why chloroplasts and mitochondria contain genomes. Comp. Funct. Genomics 4:31-36
    • (2003) Comp. Funct. Genomics , vol.4 , pp. 31-36
    • Allen, J.F.1
  • 20
    • 0345687191 scopus 로고    scopus 로고
    • The proteome of Saccharomyces cerevisiae mitochondria
    • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, et al. 2003. The proteome of Saccharomyces cerevisiae mitochondria. PNAS 100:13207-12
    • (2003) PNAS , vol.100 , pp. 13207-13212
    • Sickmann, A.1    Reinders, J.2    Wagner, Y.3    Joppich, C.4    Zahedi, R.5
  • 23
    • 84924232481 scopus 로고    scopus 로고
    • A perspective on transport of proteins into mitochondria: A myriad of open questions
    • Neupert W. 2015. A perspective on transport of proteins into mitochondria: A myriad of open questions. J. Mol. Biol. 427:1135-58
    • (2015) J. Mol. Biol. , vol.427 , pp. 1135-1158
    • Neupert, W.1
  • 24
    • 0018577407 scopus 로고
    • A different genetic code in human mitochondria
    • Barrell BG, Bankier AT, Drouin J. 1979. A different genetic code in human mitochondria. Nature 282:189-94
    • (1979) Nature , vol.282 , pp. 189-194
    • Barrell, B.G.1    Bankier, A.T.2    Drouin, J.3
  • 26
    • 0025048541 scopus 로고
    • The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded
    • Hancock K, Hajduk SL. 1990. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J. Biol. Chem. 265:19208-15
    • (1990) J. Biol. Chem. , vol.265 , pp. 19208-19215
    • Hancock, K.1    Hajduk, S.L.2
  • 27
    • 79959393267 scopus 로고    scopus 로고
    • Mitochondrial tRNA import and its consequences for mitochondrial translation
    • Schneider A. 2011. Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu. Rev. Biochem. 80:1033-53
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 1033-1053
    • Schneider, A.1
  • 30
    • 27144454126 scopus 로고    scopus 로고
    • Dual-mode recognition of noncanonical tRNAsSer by seryl-tRNA synthetase in mammalian mitochondria
    • Chimnaronk S, Gravers Jeppesen M, Suzuki T, Nyborg J, Watanabe K. 2005. Dual-mode recognition of noncanonical tRNAsSer by seryl-tRNA synthetase in mammalian mitochondria. EMBO J. 24:3369-79
    • (2005) EMBO J. , vol.24 , pp. 3369-3379
    • Chimnaronk, S.1    Gravers Jeppesen, M.2    Suzuki, T.3    Nyborg, J.4    Watanabe, K.5
  • 31
    • 84909594483 scopus 로고    scopus 로고
    • Structure of the large ribosomal subunit from human mitochondria
    • Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, et al. 2014. Structure of the large ribosomal subunit from human mitochondria. Science 346:718-22
    • (2014) Science , vol.346 , pp. 718-722
    • Brown, A.1    Amunts, A.2    Bai, X.C.3    Sugimoto, Y.4    Edwards, P.C.5
  • 33
    • 84927947449 scopus 로고    scopus 로고
    • Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome
    • Greber BJ, Bieri P, Leibundgut M, LeitnerA, Aebersold R, et al. 2015. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348:303-8
    • (2015) Science , vol.348 , pp. 303-308
    • Greber, B.J.1    Bieri, P.2    Leibundgut, M.3    Leitner, A.4    Aebersold, R.5
  • 34
    • 84897000112 scopus 로고    scopus 로고
    • Structure of the yeast mitochondrial large ribosomal subunit
    • Amunts A, Brown A, Bai XC, Llacer JL, Hussain T, et al. 2014. Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485-89
    • (2014) Science , vol.343 , pp. 1485-1489
    • Amunts, A.1    Brown, A.2    Bai, X.C.3    Llacer, J.L.4    Hussain, T.5
  • 35
    • 0141953259 scopus 로고    scopus 로고
    • Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins
    • Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. 2003. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115:97-108
    • (2003) Cell , vol.115 , pp. 97-108
    • Sharma, M.R.1    Koc, E.C.2    Datta, P.P.3    Booth, T.M.4    Spremulli, L.L.5    Agrawal, R.K.6
  • 38
    • 0017063921 scopus 로고
    • Higher-plantmitochondrial ribosomes contain a 5S ribosomal ribonucleic acid component
    • Leaver CJ, HarmeyMA. 1976. Higher-plantmitochondrial ribosomes contain a 5S ribosomal ribonucleic acid component. Biochem. J. 157:275-77
    • (1976) Biochem. J. , vol.157 , pp. 275-277
    • Leaver, C.J.1    Harmey, M.A.2
  • 39
    • 41149155904 scopus 로고    scopus 로고
    • 5S rRNA: Structure and function from head to toe
    • Dontsova OA, Dinman JD. 2005. 5S rRNA: structure and function from head to toe. Int. J. Biomed. Sci. 1:2-7
    • (2005) Int. J. Biomed. Sci. , vol.1 , pp. 2-7
    • Dontsova, O.A.1    Dinman, J.D.2
  • 41
    • 84922065877 scopus 로고    scopus 로고
    • The complete structure of the large subunit of the mammalian mitochondrial ribosome
    • Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, et al. 2014. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515:283-86
    • (2014) Nature , vol.515 , pp. 283-286
    • Greber, B.J.1    Boehringer, D.2    Leibundgut, M.3    Bieri, P.4    Leitner, A.5
  • 42
    • 67649347914 scopus 로고    scopus 로고
    • Characterization of 67mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral
    • Dowton M, Cameron SL, Dowavic JI, Austin AD, WhitingMF. 2009. Characterization of 67mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol. Biol. Evol. 26:1607-17
    • (2009) Mol. Biol. Evol. , vol.26 , pp. 1607-1617
    • Dowton, M.1    Cameron, S.L.2    Dowavic, J.I.3    Austin, A.D.4    Whiting, M.F.5
  • 43
    • 0032426882 scopus 로고    scopus 로고
    • The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae
    • Foury F, Roganti T, LecrenierN, Purnelle B. 1998. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440:325-31
    • (1998) FEBS Lett. , vol.440 , pp. 325-331
    • Foury, F.1    Roganti, T.2    Lecrenier, N.3    Purnelle, B.4
  • 44
    • 0025786898 scopus 로고
    • Bovine mitochondrial ribosomes possess a high affinity binding site for guanine nucleotides
    • Denslow ND, Anders JC, O'Brien TW. 1991. Bovine mitochondrial ribosomes possess a high affinity binding site for guanine nucleotides. J. Biol. Chem. 266:9586-90
    • (1991) J. Biol. Chem. , vol.266 , pp. 9586-9590
    • Denslow, N.D.1    Anders, J.C.2    O'Brien, T.W.3
  • 46
    • 84928475949 scopus 로고    scopus 로고
    • Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling
    • Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O, et al. 2015. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat. Commun. 6:6941
    • (2015) Nat. Commun. , vol.6 , pp. 6941
    • Sohmen, D.1    Chiba, S.2    Shimokawa-Chiba, N.3    Innis, C.A.4    Berninghausen, O.5
  • 47
    • 84941169541 scopus 로고    scopus 로고
    • Cotranslational protein folding inside the ribosome exit tunnel
    • Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L, et al. 2015. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 12:1533-40
    • (2015) Cell Rep. , vol.12 , pp. 1533-1540
    • Nilsson, O.B.1    Hedman, R.2    Marino, J.3    Wickles, S.4    Bischoff, L.5
  • 48
    • 84924777167 scopus 로고    scopus 로고
    • Structure and assembly pathway of the ribosome quality control complex
    • Shao S, Brown A, Santhanam B, Hegde RS. 2015. Structure and assembly pathway of the ribosome quality control complex. Mol. Cell 57:433-44
    • (2015) Mol. Cell , vol.57 , pp. 433-444
    • Shao, S.1    Brown, A.2    Santhanam, B.3    Hegde, R.S.4
  • 49
    • 77953021899 scopus 로고    scopus 로고
    • Co-translationalmembrane insertion of mitochondrially encoded proteins
    • OttM, Herrmann JM. 2010. Co-translationalmembrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta 1803:767-75
    • (2010) Biochim. Biophys. Acta , vol.1803 , pp. 767-775
    • Ott, M.1    Herrmann, J.M.2
  • 50
    • 66249135682 scopus 로고    scopus 로고
    • Mrpl36 is important for generation of assembly competent proteins during mitochondrial translation
    • Prestele M, Vogel F, Reichert AS, Herrmann JM, Ott M. 2009. Mrpl36 is important for generation of assembly competent proteins during mitochondrial translation. Mol. Biol. Cell 20:2615-25
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2615-2625
    • Prestele, M.1    Vogel, F.2    Reichert, A.S.3    Herrmann, J.M.4    Ott, M.5
  • 52
    • 0034703062 scopus 로고    scopus 로고
    • Interaction ofmammalian mitochondrial ribosomes with the innermembrane
    • LiuM, Spremulli L. 2000. Interaction ofmammalian mitochondrial ribosomes with the innermembrane. J. Biol. Chem. 275:29400-6
    • (2000) J. Biol. Chem. , vol.275 , pp. 29400-29406
    • Liu, M.1    Spremulli, L.2
  • 53
    • 84892797558 scopus 로고    scopus 로고
    • Architecture of the large subunit of the mammalian mitochondrial ribosome
    • Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, et al. 2014. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505:515-19
    • (2014) Nature , vol.505 , pp. 515-519
    • Greber, B.J.1    Boehringer, D.2    Leitner, A.3    Bieri, P.4    Voigts-Hoffmann, F.5
  • 54
    • 84931561092 scopus 로고    scopus 로고
    • Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography
    • Pfeffer S, Woellhaf MW, Herrmann JM, Forster F. 2015. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6:6019
    • (2015) Nat. Commun. , vol.6 , pp. 6019
    • Pfeffer, S.1    Woellhaf, M.W.2    Herrmann, J.M.3    Forster, F.4
  • 55
    • 84892141124 scopus 로고    scopus 로고
    • Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon
    • Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, et al. 2014. Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nat. Commun. 5:3072
    • (2014) Nat. Commun. , vol.5 , pp. 3072
    • Pfeffer, S.1    Dudek, J.2    Gogala, M.3    Schorr, S.4    Linxweiler, J.5
  • 56
    • 0038819972 scopus 로고    scopus 로고
    • Evidence that synthesis of the Saccharomyces cerevisiae mitochondrially encoded ribosomal protein Var1p may be membrane localized
    • Fiori A, Mason TL, Fox TD. 2003. Evidence that synthesis of the Saccharomyces cerevisiae mitochondrially encoded ribosomal protein Var1p may be membrane localized. Eukaryot. Cell 2:651-53
    • (2003) Eukaryot. Cell , vol.2 , pp. 651-653
    • Fiori, A.1    Mason, T.L.2    Fox, T.D.3
  • 57
    • 0348136787 scopus 로고    scopus 로고
    • Yeast Oxa1 interacts with mitochondrial ribosomes: The importance of the C-terminal hydrophilic region of Oxa1
    • Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA. 2003. Yeast Oxa1 interacts with mitochondrial ribosomes: The importance of the C-terminal hydrophilic region of Oxa1. EMBO J. 22:6438-47
    • (2003) EMBO J. , vol.22 , pp. 6438-6447
    • Jia, L.1    Dienhart, M.2    Schramp, M.3    McCauley, M.4    Hell, K.5    Stuart, R.A.6
  • 58
    • 84869389750 scopus 로고    scopus 로고
    • The YidC/Oxa1/Alb3 protein family: Common principles and distinct features
    • Saller MJ, Wu ZC, de Keyzer J, Driessen AJ. 2012. The YidC/Oxa1/Alb3 protein family: common principles and distinct features. Biol. Chem. 393:1279-90
    • (2012) Biol. Chem. , vol.393 , pp. 1279-1290
    • Saller, M.J.1    Wu, Z.C.2    De Keyzer, J.3    Driessen, A.J.4
  • 59
    • 78651367836 scopus 로고    scopus 로고
    • Evolution ofYidC/Oxa1/Alb3 insertases: Three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts
    • Funes S, Kauff F, van der Sluis EO, OttM, Herrmann JM. 2011. Evolution ofYidC/Oxa1/Alb3 insertases: Three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol. Chem. 392:13-19
    • (2011) Biol. Chem. , vol.392 , pp. 13-19
    • Funes, S.1    Kauff, F.2    Van Der Sluis, E.O.3    Ott, M.4    Herrmann, J.M.5
  • 60
    • 0030656514 scopus 로고    scopus 로고
    • Oxa1p mediates the export of the N-and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space
    • Hell K, Herrmann J, Pratje E, Neupert W, Stuart RA. 1997. Oxa1p mediates the export of the N-and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett. 418:367-70
    • (1997) FEBS Lett. , vol.418 , pp. 367-370
    • Hell, K.1    Herrmann, J.2    Pratje, E.3    Neupert, W.4    Stuart, R.A.5
  • 61
    • 0030952628 scopus 로고    scopus 로고
    • Membrane translocation of mitochondrially coded Cox2p: Distinct requirements for export ofNand C termini and dependence on the conserved proteinOxa1p
    • He S, Fox TD. 1997. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export ofNand C termini and dependence on the conserved proteinOxa1p. Mol. Biol. Cell 8:1449-60
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1449-1460
    • He, S.1    Fox, T.D.2
  • 62
    • 2142705713 scopus 로고    scopus 로고
    • F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis
    • van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ. 2004. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165:213-22
    • (2004) J. Cell Biol. , vol.165 , pp. 213-222
    • Van Der Laan, M.1    Bechtluft, P.2    Kol, S.3    Nouwen, N.4    Driessen, A.J.5
  • 63
    • 15744397061 scopus 로고    scopus 로고
    • YidC-an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes
    • van der Laan M, Nouwen NP, Driessen AJ. 2005. YidC-an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr. Opin. Microbiol. 8:182-87
    • (2005) Curr. Opin. Microbiol. , vol.8 , pp. 182-187
    • Van Der Laan, M.1    Nouwen, N.P.2    Driessen, A.J.3
  • 64
    • 0034959718 scopus 로고    scopus 로고
    • Reconstitution of Sec-dependent membrane protein insertion: Nascent FtsQ interacts with YidC in a SecYEG-dependentmanner
    • van der Laan M, HoubenEN, Nouwen N, Luirink J, Driessen AJ. 2001. Reconstitution of Sec-dependent membrane protein insertion:Nascent FtsQ interacts with YidC in a SecYEG-dependentmanner. EMBO Rep. 2:519-23
    • (2001) EMBO Rep. , vol.2 , pp. 519-523
    • Van Der Laan, M.1    Houben, E.N.2    Nouwen, N.3    Luirink, J.4    Driessen, A.J.5
  • 65
    • 0035868763 scopus 로고    scopus 로고
    • Oxa1p acts as a generalmembrane insertion machinery for proteins encoded by mitochondrial DNA
    • Hell K, Neupert W, Stuart RA. 2001. Oxa1p acts as a generalmembrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J. 20:1281-88
    • (2001) EMBO J. , vol.20 , pp. 1281-1288
    • Hell, K.1    Neupert, W.2    Stuart, R.A.3
  • 66
    • 0345732691 scopus 로고    scopus 로고
    • Ribosome binding to the Oxa1 complex facilitates cotranslational protein insertion in mitochondria
    • Szyrach G, Ott M, Bonnefoy N, Neupert W, Herrmann JM. 2003. Ribosome binding to the Oxa1 complex facilitates cotranslational protein insertion in mitochondria. EMBO J. 22:6448-57
    • (2003) EMBO J. , vol.22 , pp. 6448-6457
    • Szyrach, G.1    Ott, M.2    Bonnefoy, N.3    Neupert, W.4    Herrmann, J.M.5
  • 67
    • 0035923538 scopus 로고    scopus 로고
    • Role of positively charged transmembrane segments in the insertion and assembly of mitochondrial inner-membrane proteins
    • Saint-Georges Y, Hamel P, Lemaire C, Dujardin G. 2001. Role of positively charged transmembrane segments in the insertion and assembly of mitochondrial inner-membrane proteins. PNAS 98:13814-19
    • (2001) PNAS , vol.98 , pp. 13814-13819
    • Saint-Georges, Y.1    Hamel, P.2    Lemaire, C.3    Dujardin, G.4
  • 68
    • 84870669523 scopus 로고    scopus 로고
    • Mitochondrial protein synthesis, import, and assembly
    • Fox TD. 2012. Mitochondrial protein synthesis, import, and assembly. Genetics 192:1203-34
    • (2012) Genetics , vol.192 , pp. 1203-1234
    • Fox, T.D.1
  • 69
    • 77956249282 scopus 로고    scopus 로고
    • Preferential selection of the 5-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes
    • Christian BE, Spremulli LL. 2010. Preferential selection of the 5-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes. J. Biol. Chem. 285:28379-86
    • (2010) J. Biol. Chem. , vol.285 , pp. 28379-28386
    • Christian, B.E.1    Spremulli, L.L.2
  • 70
    • 42449139620 scopus 로고    scopus 로고
    • Lack of secondary structure characterizes the 5- ends of mammalian mitochondrial mRNAs
    • Jones CN, Wilkinson KA, Hung KT, Weeks KM, Spremulli LL. 2008. Lack of secondary structure characterizes the 5- ends of mammalian mitochondrial mRNAs. RNA 14:862-71
    • (2008) RNA , vol.14 , pp. 862-871
    • Jones, C.N.1    Wilkinson, K.A.2    Hung, K.T.3    Weeks, K.M.4    Spremulli, L.L.5
  • 71
    • 0025076337 scopus 로고
    • Identification and initial characterization of translational initiation factor 2 from bovine mitochondria
    • Liao HX, Spremulli LL. 1990. Identification and initial characterization of translational initiation factor 2 from bovine mitochondria. J. Biol. Chem. 265:13618-22
    • (1990) J. Biol. Chem. , vol.265 , pp. 13618-13622
    • Liao, H.X.1    Spremulli, L.L.2
  • 72
    • 0037144517 scopus 로고    scopus 로고
    • Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs
    • Koc EC, Spremulli LL. 2002. Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. J. Biol. Chem. 277:35541-49
    • (2002) J. Biol. Chem. , vol.277 , pp. 35541-35549
    • Koc, E.C.1    Spremulli, L.L.2
  • 73
    • 0028121106 scopus 로고
    • Translation initiation factor IF1 is essential for cell viability in Escherichia coli
    • Cummings HS, Hershey JW. 1994. Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J. Bacteriol. 176:198-205
    • (1994) J. Bacteriol. , vol.176 , pp. 198-205
    • Cummings, H.S.1    Hershey, J.W.2
  • 74
    • 38649115355 scopus 로고    scopus 로고
    • A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors
    • Gaur R, Grasso D, Datta PP, Krishna PD, Das G, et al. 2008. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol. Cell 29:180-90
    • (2008) Mol. Cell , vol.29 , pp. 180-190
    • Gaur, R.1    Grasso, D.2    Datta, P.P.3    Krishna, P.D.4    Das, G.5
  • 75
    • 84864447598 scopus 로고    scopus 로고
    • Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. Cerevisiae
    • Atkinson GC, Kuzmenko A, Kamenski P, Vysokikh MY, Lakunina V, et al. 2012. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae. Nucleic Acids Res. 40:6122-34
    • (2012) Nucleic Acids Res. , vol.40 , pp. 6122-6134
    • Atkinson, G.C.1    Kuzmenko, A.2    Kamenski, P.3    Vysokikh, M.Y.4    Lakunina, V.5
  • 76
    • 38649090322 scopus 로고    scopus 로고
    • Identification of phosphorylation sites in mammalian mitochondrial ribosomal protein DAP3
    • Miller JL, Koc H, Koc EC. 2008. Identification of phosphorylation sites in mammalian mitochondrial ribosomal protein DAP3. Protein Sci. 17:251-60
    • (2008) Protein Sci. , vol.17 , pp. 251-260
    • Miller, J.L.1    Koc, H.2    Koc, E.C.3
  • 77
    • 34249104793 scopus 로고    scopus 로고
    • Translation initiation in Saccharomyces cerevisiae mitochondria: Functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p
    • Williams EH, Butler CA, Bonnefoy N, Fox TD. 2007. Translation initiation in Saccharomyces cerevisiae mitochondria: functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p. Genetics 175:1117-26
    • (2007) Genetics , vol.175 , pp. 1117-1126
    • Williams, E.H.1    Butler, C.A.2    Bonnefoy, N.3    Fox, T.D.4
  • 78
    • 0033959624 scopus 로고    scopus 로고
    • In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation
    • Bonnefoy N, Fox TD. 2000. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol. Gen. Genet. 262:1036-46
    • (2000) Mol. Gen. Genet. , vol.262 , pp. 1036-1046
    • Bonnefoy, N.1    Fox, T.D.2
  • 79
    • 84903950561 scopus 로고    scopus 로고
    • Regulation of the mammalian elongation cycle by subunit rolling: A eukaryotic-specific ribosome rearrangement
    • Budkevich TV, Giesebrecht J, Behrmann E, Loerke J, Ramrath DJ, et al. 2014. Regulation of the mammalian elongation cycle by subunit rolling: A eukaryotic-specific ribosome rearrangement. Cell 158:121-31
    • (2014) Cell , vol.158 , pp. 121-131
    • Budkevich, T.V.1    Giesebrecht, J.2    Behrmann, E.3    Loerke, J.4    Ramrath, D.J.5
  • 80
    • 0024807513 scopus 로고
    • Bovine mitochondrial protein synthesis elongation factors: Identification and initial characterization of an elongation factor Tu-elongation factor Ts complex
    • Schwartzbach CJ, Spremulli LL. 1989. Bovine mitochondrial protein synthesis elongation factors: identification and initial characterization of an elongation factor Tu-elongation factor Ts complex. J. Biol. Chem. 264:19125-31
    • (1989) J. Biol. Chem. , vol.264 , pp. 19125-19131
    • Schwartzbach, C.J.1    Spremulli, L.L.2
  • 81
    • 4444306660 scopus 로고    scopus 로고
    • Expression and characterization of isoform 1 of human mitochondrial elongation factor G
    • Bhargava K, Templeton P, Spremulli LL. 2004. Expression and characterization of isoform 1 of human mitochondrial elongation factor G. Protein Expr. Purif. 37:368-76
    • (2004) Protein Expr. Purif. , vol.37 , pp. 368-376
    • Bhargava, K.1    Templeton, P.2    Spremulli, L.L.3
  • 82
    • 8344259033 scopus 로고    scopus 로고
    • Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency
    • Coenen MJ, AntonickaH, Ugalde C, Sasarman F, Rossi R, et al. 2004. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N. Engl. J. Med. 351:2080-86
    • (2004) N. Engl. J. Med. , vol.351 , pp. 2080-2086
    • Coenen, M.J.1    Antonicka, H.2    Ugalde, C.3    Sasarman, F.4    Rossi, R.5
  • 83
    • 33744752749 scopus 로고    scopus 로고
    • The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients withmutations in themitochondrial translation factor EFG1
    • Antonicka H, Sasarman F, Kennaway NG, Shoubridge EA. 2006. The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients withmutations in themitochondrial translation factor EFG1. Hum. Mol. Genet. 15:1835-46
    • (2006) Hum. Mol. Genet. , vol.15 , pp. 1835-1846
    • Antonicka, H.1    Sasarman, F.2    Kennaway, N.G.3    Shoubridge, E.A.4
  • 84
    • 33751085653 scopus 로고    scopus 로고
    • Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs
    • Smeitink JA, Elpeleg O, Antonicka H, Diepstra H, Saada A, et al. 2006. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am. J. Hum. Genet. 79:869-77
    • (2006) Am. J. Hum. Genet. , vol.79 , pp. 869-877
    • Smeitink, J.A.1    Elpeleg, O.2    Antonicka, H.3    Diepstra, H.4    Saada, A.5
  • 85
    • 67651097815 scopus 로고    scopus 로고
    • The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTuGTPaa-tRNA ternary complex
    • Valente L, Shigi N, Suzuki T, Zeviani M. 2009. The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTuGTPaa-tRNA ternary complex. Biochim. Biophys. Acta 1792:791-95
    • (2009) Biochim. Biophys. Acta , vol.1792 , pp. 791-795
    • Valente, L.1    Shigi, N.2    Suzuki, T.3    Zeviani, M.4
  • 86
    • 84905640830 scopus 로고    scopus 로고
    • Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors
    • Watanabe Y, Suematsu T, Ohtsuki T. 2014. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front. Genet. 5:109
    • (2014) Front. Genet. , vol.5 , pp. 109
    • Watanabe, Y.1    Suematsu, T.2    Ohtsuki, T.3
  • 87
    • 0022400592 scopus 로고
    • Bovine mitochondrial ribosomes. Elongation factor specificity
    • Eberly SL, Locklear V, Spremulli LL. 1985. Bovine mitochondrial ribosomes. Elongation factor specificity. J. Biol. Chem. 260:8721-25
    • (1985) J. Biol. Chem. , vol.260 , pp. 8721-8725
    • Eberly, S.L.1    Locklear, V.2    Spremulli, L.L.3
  • 88
    • 14244250065 scopus 로고    scopus 로고
    • Crystal structure of the bovine mitochondrial elongation factor TuTs complex
    • JeppesenMG, Navratil T, Spremulli LL, Nyborg J. 2005. Crystal structure of the bovine mitochondrial elongation factor TuTs complex. J. Biol. Chem. 280:5071-81
    • (2005) J. Biol. Chem. , vol.280 , pp. 5071-5081
    • Jeppesen, M.G.1    Navratil, T.2    Spremulli, L.L.3    Nyborg, J.4
  • 90
    • 0034617088 scopus 로고    scopus 로고
    • Interaction ofmitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts
    • Cai YC, Bullard JM, Thompson NL, Spremulli LL. 2000. Interaction ofmitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts. J. Biol. Chem. 275:20308-14
    • (2000) J. Biol. Chem. , vol.275 , pp. 20308-20314
    • Cai, Y.C.1    Bullard, J.M.2    Thompson, N.L.3    Spremulli, L.L.4
  • 91
    • 0014348009 scopus 로고
    • Release factors differing in specificity for terminator codons
    • Scolnick E, Tompkins R, Caskey T, Nirenberg M. 1968. Release factors differing in specificity for terminator codons. PNAS 61:768-74
    • (1968) PNAS , vol.61 , pp. 768-774
    • Scolnick, E.1    Tompkins, R.2    Caskey, T.3    Nirenberg, M.4
  • 92
    • 0018604829 scopus 로고
    • Five TGA "stop" codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II
    • Fox TD. 1979. Five TGA "stop" codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. PNAS 76:6534-38
    • (1979) PNAS , vol.76 , pp. 6534-6538
    • Fox, T.D.1
  • 93
    • 0023654312 scopus 로고
    • Isolation of a rat mitochondrial release factor. Accommodation of the changed genetic code for termination
    • Lee CC, Timms KM, Trotman CN, Tate WP. 1987. Isolation of a rat mitochondrial release factor. Accommodation of the changed genetic code for termination. J. Biol. Chem. 262:3548-52
    • (1987) J. Biol. Chem. , vol.262 , pp. 3548-3552
    • Lee, C.C.1    Timms, K.M.2    Trotman, C.N.3    Tate, W.P.4
  • 94
    • 84867817961 scopus 로고    scopus 로고
    • Evolution and diversification of the organellar release factor family
    • Duarte I, Nabuurs SB, MagnoR, HuynenM. 2012. Evolution and diversification of the organellar release factor family. Mol. Biol. Evol. 29:3497-512
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 3497-3512
    • Duarte, I.1    Nabuurs, S.B.2    Magno, R.3    Huynen, M.4
  • 96
    • 77949547496 scopus 로고    scopus 로고
    • A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome
    • RichterR, Rorbach J, Pajak A, Smith PM, Wessels HJ, et al. 2010. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 29:1116-25
    • (2010) EMBO J. , vol.29 , pp. 1116-1125
    • Richter, R.1    Rorbach, J.2    Pajak, A.3    Smith, P.M.4    Wessels, H.J.5
  • 97
    • 84907587253 scopus 로고    scopus 로고
    • Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria
    • Akabane S, Ueda T, Nierhaus KH, Takeuchi N. 2014. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLOS Genet. 10:e1004616
    • (2014) PLOS Genet. , vol.10 , pp. e1004616
    • Akabane, S.1    Ueda, T.2    Nierhaus, K.H.3    Takeuchi, N.4
  • 98
    • 84858309380 scopus 로고    scopus 로고
    • Structural basis for the rescue of stalled ribosomes: Structure of YaeJ bound to the ribosome
    • Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. 2012. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science 335:1370-72
    • (2012) Science , vol.335 , pp. 1370-1372
    • Gagnon, M.G.1    Seetharaman, S.V.2    Bulkley, D.3    Steitz, T.A.4
  • 101
    • 34548276891 scopus 로고    scopus 로고
    • MtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG
    • Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, et al. 2007. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol. Cell 27:745-57
    • (2007) Mol. Cell , vol.27 , pp. 745-757
    • Soleimanpour-Lichaei, H.R.1    Kühl, I.2    Gaisne, M.3    Passos, J.F.4    Wydro, M.5
  • 102
    • 68949204220 scopus 로고    scopus 로고
    • EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis
    • Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, et al. 2009. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol. Cell 35:502-10
    • (2009) Mol. Cell , vol.35 , pp. 502-510
    • Tsuboi, M.1    Morita, H.2    Nozaki, Y.3    Akama, K.4    Ueda, T.5
  • 103
    • 65249170067 scopus 로고    scopus 로고
    • Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria
    • Christian BE, Spremulli LL. 2009. Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria. Biochemistry 48:3269-78
    • (2009) Biochemistry , vol.48 , pp. 3269-3278
    • Christian, B.E.1    Spremulli, L.L.2
  • 104
    • 34547113093 scopus 로고    scopus 로고
    • Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase
    • Khalimonchuk O, Bird A, Winge DR. 2007. Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J. Biol. Chem. 282:17442-49
    • (2007) J. Biol. Chem. , vol.282 , pp. 17442-17449
    • Khalimonchuk, O.1    Bird, A.2    Winge, D.R.3
  • 105
    • 84909606778 scopus 로고    scopus 로고
    • Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling
    • Williams CC, Jan CH, Weissman JS. 2014. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748-51
    • (2014) Science , vol.346 , pp. 748-751
    • Williams, C.C.1    Jan, C.H.2    Weissman, J.S.3
  • 106
    • 0017857795 scopus 로고
    • Identification of cytochrome c oxidase subunits in nuclear yeast mutants lacking the functional enzyme
    • Cabral F, SchatzG. 1978. Identification of cytochrome c oxidase subunits in nuclear yeast mutants lacking the functional enzyme. J. Biol. Chem. 253:4396-401
    • (1978) J. Biol. Chem. , vol.253 , pp. 4396-4401
    • Cabral, F.1    Schatz, G.2
  • 107
    • 0015844764 scopus 로고
    • Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. I. Effect of nuclear mutations on mitochondrial protein synthesis
    • Ebner E, Mennucci L, Schatz G. 1973. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. I. Effect of nuclear mutations on mitochondrial protein synthesis. J. Biol. Chem. 248:5360-68
    • (1973) J. Biol. Chem. , vol.248 , pp. 5360-5368
    • Ebner, E.1    Mennucci, L.2    Schatz, G.3
  • 108
    • 67649833762 scopus 로고    scopus 로고
    • Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome
    • Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B, et al. 2009. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41:833-37
    • (2009) Nat. Genet. , vol.41 , pp. 833-837
    • Weraarpachai, W.1    Antonicka, H.2    Sasarman, F.3    Seeger, J.4    Schrank, B.5
  • 109
    • 84885109382 scopus 로고    scopus 로고
    • Yeast PPR proteins, watchdogs of mitochondrial gene expression
    • Herbert CJ, Golik P, Bonnefoy N. 2013. Yeast PPR proteins, watchdogs of mitochondrial gene expression. RNA Biol. 10:1477-94
    • (2013) RNA Biol. , vol.10 , pp. 1477-1494
    • Herbert, C.J.1    Golik, P.2    Bonnefoy, N.3
  • 110
    • 84899745039 scopus 로고    scopus 로고
    • Pentatricopeptide repeat proteins in plants
    • Barkan A, Small I. 2014. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65:415-42
    • (2014) Annu. Rev. Plant Biol. , vol.65 , pp. 415-442
    • Barkan, A.1    Small, I.2
  • 111
    • 0031944477 scopus 로고    scopus 로고
    • Functional interactions between yeast mitochondrial ribosomes and mRNA 5- untranslated leaders
    • Green-Willms NS, Fox TD, Costanzo MC. 1998. Functional interactions between yeast mitochondrial ribosomes and mRNA 5- untranslated leaders. Mol. Cell. Biol. 18:1826-34
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 1826-1834
    • Green-Willms, N.S.1    Fox, T.D.2    Costanzo, M.C.3
  • 112
    • 0026020194 scopus 로고
    • Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator
    • Haffter P, McMullin TW, Fox TD. 1991. Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics 127:319-26
    • (1991) Genetics , vol.127 , pp. 319-326
    • Haffter, P.1    McMullin, T.W.2    Fox, T.D.3
  • 113
    • 84923101224 scopus 로고    scopus 로고
    • Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies
    • Kehrein K, Schilling R, Möller-Hergt BV, Wurm CA, Jakobs S, et al. 2015. Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep. 10:843-53
    • (2015) Cell Rep. , vol.10 , pp. 843-853
    • Kehrein, K.1    Schilling, R.2    Möller-Hergt, B.V.3    Wurm, C.A.4    Jakobs, S.5
  • 114
    • 77953496198 scopus 로고    scopus 로고
    • Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation
    • Bauerschmitt H, Mick DU, Deckers M, Vollmer C, Funes S, et al. 2010. Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation. Mol. Biol. Cell 21:1937-44
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1937-1944
    • Bauerschmitt, H.1    Mick, D.U.2    Deckers, M.3    Vollmer, C.4    Funes, S.5
  • 115
    • 0024616563 scopus 로고
    • Control of the Saccharomyces cerevisiae regulatory gene PET494: Transcriptional repression by glucose and translational induction by oxygen
    • Marykwas DL, Fox TD. 1989. Control of the Saccharomyces cerevisiae regulatory gene PET494: Transcriptional repression by glucose and translational induction by oxygen. Mol. Cell. Biol. 9:484-91
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 484-491
    • Marykwas, D.L.1    Fox, T.D.2
  • 116
    • 73249131024 scopus 로고    scopus 로고
    • F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase
    • Rak M, Tzagoloff A. 2009. F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase. PNAS 106:18509-14
    • (2009) PNAS , vol.106 , pp. 18509-18514
    • Rak, M.1    Tzagoloff, A.2
  • 117
    • 84869106350 scopus 로고    scopus 로고
    • TheCbp3-Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondria
    • Gruschke S, Römpler K, Hildenbeutel M, KehreinK, Kühl I, et al. 2012. TheCbp3-Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondria. J. Cell Biol. 199:137-50
    • (2012) J. Cell Biol. , vol.199 , pp. 137-150
    • Gruschke, S.1    Römpler, K.2    Hildenbeutel, M.3    Kehrein, K.4    Kühl, I.5
  • 118
    • 0242473137 scopus 로고    scopus 로고
    • Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p
    • Perez-Martinez X, Broadley SA, Fox TD. 2003. Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO J. 22:5951-61
    • (2003) EMBO J. , vol.22 , pp. 5951-5961
    • Perez-Martinez, X.1    Broadley, S.A.2    Fox, T.D.3
  • 119
    • 4644319049 scopus 로고    scopus 로고
    • Mss51p andCox14p jointly regulatemitochondrial Cox1p expression in Saccharomyces cerevisiae
    • Barrientos A, Zambrano A, Tzagoloff A. 2004. Mss51p andCox14p jointly regulatemitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J. 23:3472-82
    • (2004) EMBO J. , vol.23 , pp. 3472-3482
    • Barrientos, A.1    Zambrano, A.2    Tzagoloff, A.3
  • 121
    • 0025051343 scopus 로고
    • The MSS51 gene product is required for the translation of the COX1 mRNA in yeast mitochondria
    • Decoster E, Simon M, Hatat D, Faye G. 1990. The MSS51 gene product is required for the translation of the COX1 mRNA in yeast mitochondria. Mol. Gen. Genet. 224:111-18
    • (1990) Mol. Gen. Genet. , vol.224 , pp. 111-118
    • Decoster, E.1    Simon, M.2    Hatat, D.3    Faye, G.4
  • 122
    • 84939448886 scopus 로고    scopus 로고
    • Mam33 promotes cytochrome c oxidase subunit i translation in Saccharomyces cerevisiae mitochondria
    • Roloff GA, Henry MF. 2015. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria. Mol. Biol. Cell 26:2885-94
    • (2015) Mol. Biol. Cell , vol.26 , pp. 2885-2894
    • Roloff, G.A.1    Henry, M.F.2
  • 123
    • 0028984035 scopus 로고
    • The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae
    • Manthey GM, McEwen JE. 1995. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J. 14:4031-43
    • (1995) EMBO J. , vol.14 , pp. 4031-4043
    • Manthey, G.M.1    McEwen, J.E.2
  • 125
    • 84907584780 scopus 로고    scopus 로고
    • The Pet309 pentatricopeptide repeatmotifsmediate efficient binding to the mitochondrial COX1 transcript in yeast
    • Zamudio-Ochoa A, Camacho-Villasana Y, Garcia-Guerrero AE, Perez-Martinez X. 2014. The Pet309 pentatricopeptide repeatmotifsmediate efficient binding to the mitochondrial COX1 transcript in yeast. RNA Biol. 11:953-67
    • (2014) RNA Biol. , vol.11 , pp. 953-967
    • Zamudio-Ochoa, A.1    Camacho-Villasana, Y.2    Garcia-Guerrero, A.E.3    Perez-Martinez, X.4
  • 126
    • 70350088247 scopus 로고    scopus 로고
    • Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria
    • Perez-Martinez X, Butler CA, Shingu-Vazquez M, Fox TD. 2009. Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria. Mol. Biol. Cell 20:4371-80
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4371-4380
    • Perez-Martinez, X.1    Butler, C.A.2    Shingu-Vazquez, M.3    Fox, T.D.4
  • 127
    • 78650483039 scopus 로고    scopus 로고
    • Inventory control: Cytochrome c oxidase assembly regulates mitochondrial translation
    • Mick DU, Fox TD, Rehling P. 2011. Inventory control: Cytochrome c oxidase assembly regulates mitochondrial translation. Nat. Rev. Mol. Cell Biol. 12:14-20
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 14-20
    • Mick, D.U.1    Fox, T.D.2    Rehling, P.3
  • 128
    • 77957724466 scopus 로고    scopus 로고
    • Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria
    • Mick DU, Vukotic M, Piechura H, Meyer HE, Warscheid B, et al. 2010. Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria. J. Cell Biol. 191:141-54
    • (2010) J. Cell Biol. , vol.191 , pp. 141-154
    • Mick, D.U.1    Vukotic, M.2    Piechura, H.3    Meyer, H.E.4    Warscheid, B.5
  • 129
    • 35348842764 scopus 로고    scopus 로고
    • Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly
    • Pierrel F, Bestwick ML, Cobine PA, Khalimonchuk O, Cricco JA, Winge DR. 2007. Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly. EMBO J. 26:4335-46
    • (2007) EMBO J. , vol.26 , pp. 4335-4346
    • Pierrel, F.1    Bestwick, M.L.2    Cobine, P.A.3    Khalimonchuk, O.4    Cricco, J.A.5    Winge, D.R.6
  • 130
    • 73549106312 scopus 로고    scopus 로고
    • Mss51 and Ssc1 facilitate translational regulation of cytochrome c oxidase biogenesis
    • Fontanesi F, Soto IC, Horn D, Barrientos A. 2010. Mss51 and Ssc1 facilitate translational regulation of cytochrome c oxidase biogenesis. Mol. Cell. Biol. 30:245-59
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 245-259
    • Fontanesi, F.1    Soto, I.C.2    Horn, D.3    Barrientos, A.4
  • 131
    • 84870489803 scopus 로고    scopus 로고
    • A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis
    • Soto IC, Fontanesi F, Myers RS, Hamel P, Barrientos A. 2012. A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. Cell Metab. 16:801-13
    • (2012) Cell Metab. , vol.16 , pp. 801-813
    • Soto, I.C.1    Fontanesi, F.2    Myers, R.S.3    Hamel, P.4    Barrientos, A.5
  • 132
    • 84857192195 scopus 로고    scopus 로고
    • LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs
    • Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB, et al. 2012. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J. 31:443-56
    • (2012) EMBO J. , vol.31 , pp. 443-456
    • Ruzzenente, B.1    Metodiev, M.D.2    Wredenberg, A.3    Bratic, A.4    Park, C.B.5
  • 133
    • 77950901962 scopus 로고    scopus 로고
    • LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria
    • Sasarman F, Brunel-Guitton C, AntonickaH, Wai T, Shoubridge EA. 2010. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol. Biol. Cell 21:1315-23
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1315-1323
    • Sasarman, F.1    Brunel-Guitton, C.2    Antonicka, H.3    Wai, T.4    Shoubridge, E.A.5
  • 134
    • 84871571936 scopus 로고    scopus 로고
    • MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation
    • Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, et al. 2012. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528-41
    • (2012) Cell , vol.151 , pp. 1528-1541
    • Mick, D.U.1    Dennerlein, S.2    Wiese, H.3    Reinhold, R.4    Pacheu-Grau, D.5
  • 135
    • 84855835044 scopus 로고    scopus 로고
    • Mutations in C12orf62, a factor that couples COX i synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis
    • Weraarpachai W, Sasarman F, Nishimura T, Antonicka H, Aure K, et al. 2012. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am. J. Hum. Genet. 90:142-51
    • (2012) Am. J. Hum. Genet. , vol.90 , pp. 142-151
    • Weraarpachai, W.1    Sasarman, F.2    Nishimura, T.3    Antonicka, H.4    Aure, K.5
  • 136
    • 84899941463 scopus 로고    scopus 로고
    • Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase
    • BourensM, Boulet A, Leary SC, Barrientos A. 2014. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Hum. Mol. Genet. 23:2901-13
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 2901-2913
    • Bourens, M.1    Boulet, A.2    Leary, S.C.3    Barrientos, A.4
  • 137
    • 0028206309 scopus 로고
    • Regulation of mitochondrial gene expression in Saccharomyces cerevisiae
    • Dieckmann CL, Staples RR. 1994. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. Int. Rev. Cytol. 152:145-81
    • (1994) Int. Rev. Cytol. , vol.152 , pp. 145-181
    • Dieckmann, C.L.1    Staples, R.R.2
  • 138
    • 0028310842 scopus 로고
    • Cbp1p is required for message stability following 5-processing of COB mRNA
    • Chen W, Dieckmann CL. 1994. Cbp1p is required for message stability following 5-processing of COB mRNA. J. Biol. Chem. 269:16574-78
    • (1994) J. Biol. Chem. , vol.269 , pp. 16574-16578
    • Chen, W.1    Dieckmann, C.L.2
  • 139
    • 0027256083 scopus 로고
    • In vivo analysis of sequences necessary for CBP1-dependent accumulation of cytochrome b transcripts in yeast mitochondria
    • Mittelmeier TM, Dieckmann CL. 1993. In vivo analysis of sequences necessary for CBP1-dependent accumulation of cytochrome b transcripts in yeast mitochondria. Mol. Cell. Biol. 13:4203-13
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 4203-4213
    • Mittelmeier, T.M.1    Dieckmann, C.L.2
  • 140
    • 0022885377 scopus 로고
    • Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5-untranslated COB leader
    • Rödel G. 1986. Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5-untranslated COB leader. Curr. Genet. 11:41-45
    • (1986) Curr. Genet. , vol.11 , pp. 41-45
    • Rödel, G.1
  • 141
    • 79959420937 scopus 로고    scopus 로고
    • Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly
    • Gruschke S, Kehrein K, Römpler K, Gröne K, Israel L, et al. 2011. Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. J. Cell Biol. 193:1101-14
    • (2011) J. Cell Biol. , vol.193 , pp. 1101-1114
    • Gruschke, S.1    Kehrein, K.2    Römpler, K.3    Gröne, K.4    Israel, L.5
  • 142
    • 84901790739 scopus 로고    scopus 로고
    • Assembly factors monitor sequential hemylation of cytochrome b to regulate mitochondrial translation
    • Hildenbeutel M, Hegg EL, Stephan K, Gruschke S, Meunier B, OttM. 2014. Assembly factors monitor sequential hemylation of cytochrome b to regulate mitochondrial translation. J. Cell Biol. 205:511-24
    • (2014) J. Cell Biol. , vol.205 , pp. 511-524
    • Hildenbeutel, M.1    Hegg, E.L.2    Stephan, K.3    Gruschke, S.4    Meunier, B.5    Ott, M.6
  • 143
    • 84892727173 scopus 로고    scopus 로고
    • Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression
    • Tucker EJ, Wanschers BF, Szklarczyk R, Mountford HS, Wijeyeratne XW, et al. 2013. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLOS Genet. 9:e1004034
    • (2013) PLOS Genet. , vol.9 , pp. e1004034
    • Tucker, E.J.1    Wanschers, B.F.2    Szklarczyk, R.3    Mountford, H.S.4    Wijeyeratne, X.W.5
  • 144
    • 84875309966 scopus 로고    scopus 로고
    • The mitochondrial RNAbinding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression
    • Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA. 2013. The mitochondrial RNAbinding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab. 17:386-98
    • (2013) Cell Metab. , vol.17 , pp. 386-398
    • Antonicka, H.1    Sasarman, F.2    Nishimura, T.3    Paupe, V.4    Shoubridge, E.A.5
  • 146
  • 147
    • 0027241016 scopus 로고
    • COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae
    • McMullin TW, Fox TD. 1993. COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae. J. Biol. Chem. 268:11737-41
    • (1993) J. Biol. Chem. , vol.268 , pp. 11737-11741
    • McMullin, T.W.1    Fox, T.D.2
  • 148
    • 78649493967 scopus 로고    scopus 로고
    • The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle
    • Gruschke S, OttM. 2010. The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle. BioEssays 32:1050-57
    • (2010) BioEssays , vol.32 , pp. 1050-1057
    • Gruschke, S.1    Ott, M.2
  • 149
    • 0032189225 scopus 로고    scopus 로고
    • Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs
    • Sanchirico ME, Fox TD, Mason TL. 1998. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J. 17:5796-804
    • (1998) EMBO J. , vol.17 , pp. 5796-5804
    • Sanchirico, M.E.1    Fox, T.D.2    Mason, T.L.3
  • 150
    • 0037238395 scopus 로고    scopus 로고
    • Interactions among COX1, COX2, andCOX3 mRNAspecific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae
    • Naithani S, Saracco SA, ButlerCA, FoxTD. 2003. Interactions among COX1, COX2, andCOX3 mRNAspecific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol. Biol. Cell 14:324-33
    • (2003) Mol. Biol. Cell , vol.14 , pp. 324-333
    • Naithani, S.1    Saracco, S.A.2    Butler, C.A.3    Fox, T.D.4
  • 151
    • 0020986735 scopus 로고
    • An mRNA maturase is encoded by the first intron of themitochondrial gene for the subunit i of cytochrome oxidase in S
    • Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP. 1983. An mRNA maturase is encoded by the first intron of themitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiaE. Cell 35:733-42
    • (1983) CerevisiaE. Cell , vol.35 , pp. 733-742
    • Carignani, G.1    Groudinsky, O.2    Frezza, D.3    Schiavon, E.4    Bergantino, E.5    Slonimski, P.P.6
  • 152
    • 84905389814 scopus 로고    scopus 로고
    • MicroRNA directly enhances mitochondrial translation during muscle differentiation
    • ZhangX, Zuo X, Yang B, Li Z, XueY, et al. 2014. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607-19
    • (2014) Cell , vol.158 , pp. 607-619
    • Zhang, X.1    Zuo, X.2    Yang, B.3    Li, Z.4    Xue, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.