-
1
-
-
0035452682
-
A hybrid methodology for learning belief networks: Benedict
-
Acid, S., de Campos, L. M.: A hybrid methodology for learning belief networks: Benedict. Int. J. Approx. Reason. 27(3), 235-262 (2001).
-
(2001)
Int. J. Approx. Reason.
, vol.27
, Issue.3
, pp. 235-262
-
-
Acid, S.1
de Campos, L.M.2
-
2
-
-
21244484641
-
Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
-
Acid, S., de Campos, L. M.: Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. J. Artif. Intell. Res. 18, 445-490 (2003).
-
(2003)
J. Artif.Intell. Res.
, vol.18
, pp. 445-490
-
-
Acid, S.1
de Campos, L.M.2
-
4
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Buntine, W. L.: A guide to the literature on learning probabilistic networks from data. IEEE Trans. Knowl. Data Eng. 8(2), 195-210 (1996).
-
(1996)
IEEE Trans. Knowl. Data Eng.
, vol.8
, Issue.2
, pp. 195-210
-
-
Buntine, W.L.1
-
5
-
-
26944437287
-
Applications of Bayesian networks in meteorology
-
In: Gámez, J. A., Moral, S., Salmerón, A. (eds.), Springer, Berlin
-
Cano, R., Sordo, C., Gutiérrez, J. M.: Applications of Bayesian networks in meteorology. In: Gámez, J. A., Moral, S., Salmerón, A. (eds.) Advances in Bayesian Networks, pp. 309-327. Springer, Berlin (2004).
-
(2004)
Advances in Bayesian Networks
, pp. 309-327
-
-
Cano, R.1
Sordo, C.2
Gutiérrez, J.M.3
-
7
-
-
0001019707
-
Learning Bayesian networks is NP-Complete
-
In: Fisher, D., Lenz, H. (eds.), Springer, Berlin
-
Chickering, D. M.: Learning Bayesian networks is NP-Complete. In: Fisher, D., Lenz, H. (eds.) Learning from Data: Artificial Intelligence and Statistics, vol. V, pp. 121-130. Springer, Berlin (1996).
-
(1996)
Learning from Data: Artificial Intelligence and Statistics
, vol.V
, pp. 121-130
-
-
Chickering, D.M.1
-
8
-
-
0003846045
-
Learning Bayesian networks: search methods and experimental results
-
Chickering, D. M., Geiger, D., Heckerman, D.: Learning Bayesian networks: search methods and experimental results. In: Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics, pp. 112-128 (1995).
-
(1995)
Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics
, pp. 112-128
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
9
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering, D. M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507-554 (2002).
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
10
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309-347 (1992).
-
(1992)
Mach. Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
11
-
-
33750071718
-
A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
-
de Campos, L. M.: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. J. Mach. Learn. Res. 7, 2149-2187 (2006).
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2149-2187
-
-
de Campos, L.M.1
-
12
-
-
0036856515
-
Ant colony optimization for learning Bayesian networks
-
de Campos, L. M., Fernández-Luna, J. M., Gámez, J. A., Puerta, J. M.: Ant colony optimization for learning Bayesian networks. Int. J. Approx. Reason. 31(3), 291-311 (2002).
-
(2002)
Int. J. Approx. Reason.
, vol.31
, Issue.3
, pp. 291-311
-
-
de Campos, L.M.1
Fernández-Luna, J.M.2
Gámez, J.A.3
Puerta, J.M.4
-
13
-
-
26944434176
-
Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags
-
de Campos, L. M., Fernández-Luna, J. M., Puerta, J. M.: Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags. In: Proceedings of IBERAMIA 2002. LNCS, vol. 2527, pp. 182-192 (2002).
-
(2002)
Proceedings of IBERAMIA 2002. LNCS
, vol.2527
, pp. 182-192
-
-
de Campos, L.M.1
Fernández-Luna, J.M.2
Puerta, J.M.3
-
15
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675701 (1937).
-
(1937)
J. Am. Stat. Assoc.
, vol.32
, Issue.200
, pp. 675701
-
-
Friedman, M.1
-
16
-
-
0002219642
-
Learning Bayesian network structure from massive datasets: the "sparse candidate" algorithm
-
Friedman, N., Nachman, I., Pe'er, D.: Learning Bayesian network structure from massive datasets: the "sparse candidate" algorithm. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI'99), pp. 206-215 (1999).
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI'99)
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Pe'er, D.3
-
17
-
-
78651369196
-
Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood
-
Gámez, J. A., Mateo, J. L., Puerta, J. M.: Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Mining Knowl. Discov. 22(1-2), 106-148 (2011).
-
(2011)
Data Mining Knowl. Discov.
, vol.22
, Issue.1-2
, pp. 106-148
-
-
Gámez, J.A.1
Mateo, J.L.2
Puerta, J.M.3
-
20
-
-
85056113221
-
Design of new algorithms for probabilistic graphical models. implementation in elvira. programo research project (tin2007-67418-c03)
-
Gámez, J. A., Salmerón, A., Cano, A.: Design of new algorithms for probabilistic graphical models. implementation in elvira. programo research project (tin2007-67418-c03). In: Jornada de Seguimiento de Proyectos, 2010. Programa Nacional de Tecnologías Informáticas (2010).
-
(2010)
Jornada de Seguimiento de Proyectos, 2010. Programa Nacional de Tecnologías Informáticas
-
-
Gámez, J.A.1
Salmerón, A.2
Cano, A.3
-
22
-
-
0035612908
-
Stratified exponential families: graphical models and model selection
-
Geiger, D., Heckerman, D., King, H., Meek, C.: Stratified exponential families: graphical models and model selection. Ann. Stat. 29(2), 505-529 (2001).
-
(2001)
Ann. Stat.
, vol.29
, Issue.2
, pp. 505-529
-
-
Geiger, D.1
Heckerman, D.2
King, H.3
Meek, C.4
-
23
-
-
0000554045
-
On the choice of a model to fit data from an exponential family
-
Haughton, D. M. A.: On the choice of a model to fit data from an exponential family. Ann. Stat. 16(1), 342-355 (1988).
-
(1988)
Ann. Stat.
, vol.16
, Issue.1
, pp. 342-355
-
-
Haughton, D.M.A.1
-
24
-
-
4344578226
-
Bayesian networks for data mining
-
Heckerman, D.: Bayesian networks for data mining. Data Mining Knowl. Discov. 1, 79-119 (1997).
-
(1997)
Data Mining Knowl. Discov.
, vol.1
, pp. 79-119
-
-
Heckerman, D.1
-
25
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., Chickering, D. M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197-243 (1995).
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
26
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65-70 (1979).
-
(1979)
Scand. J. Stat.
, vol.6
, pp. 65-70
-
-
Holm, S.1
-
28
-
-
0030245966
-
Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters
-
Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., Kuijpers, C. M. H.: Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 912-926 (1996).
-
(1996)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.18
, Issue.9
, pp. 912-926
-
-
Larrañaga, P.1
Poza, M.2
Yurramendi, Y.3
Murga, R.H.4
Kuijpers, C.M.H.5
-
29
-
-
38049126035
-
Bayesian substructure learning-approximate learning of very large network structures
-
Nägele, A., Dejori, M., Stetter, M.: Bayesian substructure learning-approximate learning of very large network structures. In: Proceedings of the 18th European conference on Machine Learning (ECML '07), pp. 238-249 (2007).
-
(2007)
Proceedings of the 18th European conference on Machine Learning (ECML '07)
, pp. 238-249
-
-
Nägele, A.1
Dejori, M.2
Stetter, M.3
-
32
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
Peña, J. M., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data efficient learning of Markov boundaries. Int. J. Approx. Reason. 45(2), 211-232 (2006).
-
(2006)
Int. J. Approx. Reason.
, vol.45
, Issue.2
, pp. 211-232
-
-
Peña, J.M.1
Nilsson, R.2
Björkegren, J.3
Tegnér, J.4
-
33
-
-
0002444961
-
Counting unlabeled acyclic digraphs
-
Springer, Berlin
-
Robinson, R. W.: Counting unlabeled acyclic digraphs. In: Combinatorial Mathematics, vol. 622, pp. 28-43. Springer, Berlin (1977).
-
(1977)
Combinatorial Mathematics
, vol.622
, pp. 28-43
-
-
Robinson, R.W.1
-
34
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461-464 (1978).
-
(1978)
Ann. Stat.
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
35
-
-
0003338515
-
Causation, prediction and search
-
Springer, Berlin
-
Spirtes, P., Glymour, C., Scheines, R.: Causation, prediction and search. In: Lecture Notes in Statistics, vol. 81. Springer, Berlin (1993).
-
(1993)
Lecture Notes in Statistics
, vol.81
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
36
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
Tsamardinos, I., Brown, L. E., Aliferis, C. F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31-78 (2006).
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
37
-
-
9444248216
-
A skeleton-based approach to learning Bayesian networks from data
-
van Dijk, S., van der Gaag, L. C., Thierens, D.: A skeleton-based approach to learning Bayesian networks from data. In: Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'03), pp. 132-143 (2003).
-
(2003)
Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'03)
, pp. 132-143
-
-
van Dijk, S.1
van der Gaag, L.C.2
Thierens, D.3
-
39
-
-
4444383943
-
An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach
-
Wong, M. L., Leung, K.-S.: An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Trans. Evol. Comput. 8(4), 378-404 (2004).
-
(2004)
IEEE Trans. Evol. Comput.
, vol.8
, Issue.4
, pp. 378-404
-
-
Wong, M.L.1
Leung, K.-S.2
|