메뉴 건너뛰기




Volumn 1, Issue 4, 2012, Pages 329-346

One iteration CHC algorithm for learning Bayesian networks: An effective and efficient algorithm for high dimensional problems

Author keywords

Bayesian networks; Local search; Machine learning; Scalability; Score based learning

Indexed keywords

BAYESIAN NETWORKS; ECONOMIC AND SOCIAL EFFECTS; ITERATIVE METHODS; LEARNING SYSTEMS; NP-HARD; SCALABILITY;

EID: 84962258235     PISSN: 21926352     EISSN: 21926360     Source Type: Journal    
DOI: 10.1007/s13748-012-0033-7     Document Type: Article
Times cited : (9)

References (39)
  • 1
    • 0035452682 scopus 로고    scopus 로고
    • A hybrid methodology for learning belief networks: Benedict
    • Acid, S., de Campos, L. M.: A hybrid methodology for learning belief networks: Benedict. Int. J. Approx. Reason. 27(3), 235-262 (2001).
    • (2001) Int. J. Approx. Reason. , vol.27 , Issue.3 , pp. 235-262
    • Acid, S.1    de Campos, L.M.2
  • 2
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • Acid, S., de Campos, L. M.: Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. J. Artif. Intell. Res. 18, 445-490 (2003).
    • (2003) J. Artif.Intell. Res. , vol.18 , pp. 445-490
    • Acid, S.1    de Campos, L.M.2
  • 4
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine, W. L.: A guide to the literature on learning probabilistic networks from data. IEEE Trans. Knowl. Data Eng. 8(2), 195-210 (1996).
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , Issue.2 , pp. 195-210
    • Buntine, W.L.1
  • 5
    • 26944437287 scopus 로고    scopus 로고
    • Applications of Bayesian networks in meteorology
    • In: Gámez, J. A., Moral, S., Salmerón, A. (eds.), Springer, Berlin
    • Cano, R., Sordo, C., Gutiérrez, J. M.: Applications of Bayesian networks in meteorology. In: Gámez, J. A., Moral, S., Salmerón, A. (eds.) Advances in Bayesian Networks, pp. 309-327. Springer, Berlin (2004).
    • (2004) Advances in Bayesian Networks , pp. 309-327
    • Cano, R.1    Sordo, C.2    Gutiérrez, J.M.3
  • 7
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-Complete
    • In: Fisher, D., Lenz, H. (eds.), Springer, Berlin
    • Chickering, D. M.: Learning Bayesian networks is NP-Complete. In: Fisher, D., Lenz, H. (eds.) Learning from Data: Artificial Intelligence and Statistics, vol. V, pp. 121-130. Springer, Berlin (1996).
    • (1996) Learning from Data: Artificial Intelligence and Statistics , vol.V , pp. 121-130
    • Chickering, D.M.1
  • 9
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507-554 (2002).
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309-347 (1992).
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 11
    • 33750071718 scopus 로고    scopus 로고
    • A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
    • de Campos, L. M.: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. J. Mach. Learn. Res. 7, 2149-2187 (2006).
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2149-2187
    • de Campos, L.M.1
  • 13
    • 26944434176 scopus 로고    scopus 로고
    • Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags
    • de Campos, L. M., Fernández-Luna, J. M., Puerta, J. M.: Local search methods for learning Bayesian networks using a modified neighborhood in the space of dags. In: Proceedings of IBERAMIA 2002. LNCS, vol. 2527, pp. 182-192 (2002).
    • (2002) Proceedings of IBERAMIA 2002. LNCS , vol.2527 , pp. 182-192
    • de Campos, L.M.1    Fernández-Luna, J.M.2    Puerta, J.M.3
  • 15
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675701 (1937).
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675701
    • Friedman, M.1
  • 17
    • 78651369196 scopus 로고    scopus 로고
    • Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood
    • Gámez, J. A., Mateo, J. L., Puerta, J. M.: Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Mining Knowl. Discov. 22(1-2), 106-148 (2011).
    • (2011) Data Mining Knowl. Discov. , vol.22 , Issue.1-2 , pp. 106-148
    • Gámez, J.A.1    Mateo, J.L.2    Puerta, J.M.3
  • 22
    • 0035612908 scopus 로고    scopus 로고
    • Stratified exponential families: graphical models and model selection
    • Geiger, D., Heckerman, D., King, H., Meek, C.: Stratified exponential families: graphical models and model selection. Ann. Stat. 29(2), 505-529 (2001).
    • (2001) Ann. Stat. , vol.29 , Issue.2 , pp. 505-529
    • Geiger, D.1    Heckerman, D.2    King, H.3    Meek, C.4
  • 23
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • Haughton, D. M. A.: On the choice of a model to fit data from an exponential family. Ann. Stat. 16(1), 342-355 (1988).
    • (1988) Ann. Stat. , vol.16 , Issue.1 , pp. 342-355
    • Haughton, D.M.A.1
  • 24
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian networks for data mining
    • Heckerman, D.: Bayesian networks for data mining. Data Mining Knowl. Discov. 1, 79-119 (1997).
    • (1997) Data Mining Knowl. Discov. , vol.1 , pp. 79-119
    • Heckerman, D.1
  • 25
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., Chickering, D. M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197-243 (1995).
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 26
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65-70 (1979).
    • (1979) Scand. J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1
  • 28
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters
    • Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., Kuijpers, C. M. H.: Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 912-926 (1996).
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.9 , pp. 912-926
    • Larrañaga, P.1    Poza, M.2    Yurramendi, Y.3    Murga, R.H.4    Kuijpers, C.M.H.5
  • 32
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • Peña, J. M., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data efficient learning of Markov boundaries. Int. J. Approx. Reason. 45(2), 211-232 (2006).
    • (2006) Int. J. Approx. Reason. , vol.45 , Issue.2 , pp. 211-232
    • Peña, J.M.1    Nilsson, R.2    Björkegren, J.3    Tegnér, J.4
  • 33
    • 0002444961 scopus 로고
    • Counting unlabeled acyclic digraphs
    • Springer, Berlin
    • Robinson, R. W.: Counting unlabeled acyclic digraphs. In: Combinatorial Mathematics, vol. 622, pp. 28-43. Springer, Berlin (1977).
    • (1977) Combinatorial Mathematics , vol.622 , pp. 28-43
    • Robinson, R.W.1
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L. E., Aliferis, C. F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31-78 (2006).
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 39
    • 4444383943 scopus 로고    scopus 로고
    • An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach
    • Wong, M. L., Leung, K.-S.: An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Trans. Evol. Comput. 8(4), 378-404 (2004).
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.4 , pp. 378-404
    • Wong, M.L.1    Leung, K.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.