메뉴 건너뛰기




Volumn 36, Issue , 2016, Pages 85-96

The role of ATP-dependent machines in regulating genome topology

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; DNA; HELICASE; DNA DIRECTED DNA POLYMERASE; DNA HELICASE; DNA TOPOISOMERASE; PROTEIN BINDING;

EID: 84961368223     PISSN: 0959440X     EISSN: 1879033X     Source Type: Journal    
DOI: 10.1016/j.sbi.2016.01.006     Document Type: Review
Times cited : (17)

References (125)
  • 1
    • 84896736638 scopus 로고    scopus 로고
    • Pack, unpack, bend, twist, pull, push: the physical side of gene expression
    • Lavelle C. Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr Opin Genet Dev 2014, 25:74-84.
    • (2014) Curr Opin Genet Dev , vol.25 , pp. 74-84
    • Lavelle, C.1
  • 3
    • 0032539693 scopus 로고    scopus 로고
    • A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics
    • SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 1998, 95:1460-1465.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 1460-1465
    • SantaLucia, J.1
  • 4
    • 84865546608 scopus 로고    scopus 로고
    • Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization
    • Vafabakhsh R., Ha T. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 2012, 337:1097-1101.
    • (2012) Science , vol.337 , pp. 1097-1101
    • Vafabakhsh, R.1    Ha, T.2
  • 5
    • 14844342574 scopus 로고    scopus 로고
    • DNA twisting flexibility and the formation of sharply looped protein-DNA complexes
    • Cloutier T.E., Widom J. DNA twisting flexibility and the formation of sharply looped protein-DNA complexes. Proc Natl Acad Sci U S A 2005, 102:3645-3650.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 3645-3650
    • Cloutier, T.E.1    Widom, J.2
  • 7
    • 0015440093 scopus 로고
    • A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases
    • Sigal N., Delius H., Kornberg T., Gefter M.L., Alberts B. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci U S A 1972, 69:3537-3541.
    • (1972) Proc Natl Acad Sci U S A , vol.69 , pp. 3537-3541
    • Sigal, N.1    Delius, H.2    Kornberg, T.3    Gefter, M.L.4    Alberts, B.5
  • 9
    • 0023833241 scopus 로고
    • Bending of the bacteriophage lambda attachment site by Escherichia coli integration host factor
    • Robertson C.A., Nash H.A. Bending of the bacteriophage lambda attachment site by Escherichia coli integration host factor. J Biol Chem 1988, 263:3554-3557.
    • (1988) J Biol Chem , vol.263 , pp. 3554-3557
    • Robertson, C.A.1    Nash, H.A.2
  • 10
    • 0029147295 scopus 로고
    • A structural model for the Escherichia coli DnaB helicase based on electron microscopy data
    • San Martin M.C., Stamford N.P., Dammerova N., Dixon N.E., Carazo J.M. A structural model for the Escherichia coli DnaB helicase based on electron microscopy data. J Struct Biol 1995, 114:167-176.
    • (1995) J Struct Biol , vol.114 , pp. 167-176
    • San Martin, M.C.1    Stamford, N.P.2    Dammerova, N.3    Dixon, N.E.4    Carazo, J.M.5
  • 11
    • 0034652354 scopus 로고    scopus 로고
    • A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase
    • Chong J.P., Hayashi M.K., Simon M.N., Xu R.M., Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 2000, 97:1530-1535.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 1530-1535
    • Chong, J.P.1    Hayashi, M.K.2    Simon, M.N.3    Xu, R.M.4    Stillman, B.5
  • 12
    • 0022977660 scopus 로고
    • The Escherichia coli dnaB replication protein is a DNA helicase
    • LeBowitz J.H., McMacken R. The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 1986, 261:4738-4748.
    • (1986) J Biol Chem , vol.261 , pp. 4738-4748
    • LeBowitz, J.H.1    McMacken, R.2
  • 13
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I., Petojevic T., Pesavento J.J., Botchan M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 2010, 37:247-258.
    • (2010) Mol Cell , vol.37 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 14
    • 0018801570 scopus 로고
    • Evidence for two mechanisms for DNA unwinding catalyzed by DNA helicases
    • Kuhn B., Abdel-Monem M., Krell H., Hoffmann-Berling H. Evidence for two mechanisms for DNA unwinding catalyzed by DNA helicases. J Biol Chem 1979, 254:11343-11350.
    • (1979) J Biol Chem , vol.254 , pp. 11343-11350
    • Kuhn, B.1    Abdel-Monem, M.2    Krell, H.3    Hoffmann-Berling, H.4
  • 15
    • 0347157844 scopus 로고    scopus 로고
    • Mcm4,6,7 uses a 'pump in ring' mechanism to unwind DNA by steric exclusion and actively translocate along a duplex
    • Kaplan D.L., Davey M.J., O'Donnell M. Mcm4,6,7 uses a 'pump in ring' mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 2003, 278:49171-49182.
    • (2003) J Biol Chem , vol.278 , pp. 49171-49182
    • Kaplan, D.L.1    Davey, M.J.2    O'Donnell, M.3
  • 17
    • 1642325936 scopus 로고    scopus 로고
    • Evolutionary history and higher order classification of AAA+ ATPases
    • Iyer L.M., Leipe D.D., Koonin E.V., Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004, 146:11-31.
    • (2004) J Struct Biol , vol.146 , pp. 11-31
    • Iyer, L.M.1    Leipe, D.D.2    Koonin, E.V.3    Aravind, L.4
  • 18
    • 0017842412 scopus 로고
    • The dnaB gene product of Escherichia coli. I. Purification, homogeneity, and physical properties
    • Reha-Krantz L.J., Hurwitz J. The dnaB gene product of Escherichia coli. I. Purification, homogeneity, and physical properties. J Biol Chem 1978, 253:4043-4050.
    • (1978) J Biol Chem , vol.253 , pp. 4043-4050
    • Reha-Krantz, L.J.1    Hurwitz, J.2
  • 19
    • 0021759105 scopus 로고
    • Nucleotide sequence of dnaB and the primary structure of the dnaB protein from Escherichia coli
    • Nakayama N., Arai N., Bond M.W., Kaziro Y., Arai K. Nucleotide sequence of dnaB and the primary structure of the dnaB protein from Escherichia coli. J Biol Chem 1984, 259:97-101.
    • (1984) J Biol Chem , vol.259 , pp. 97-101
    • Nakayama, N.1    Arai, N.2    Bond, M.W.3    Kaziro, Y.4    Arai, K.5
  • 20
    • 0024550638 scopus 로고
    • ATP-dependent assembly of double hexamers of SV40T antigen at the viral origin of DNA replication
    • Mastrangelo I.A., Hough P.V., Wall J.S., Dodson M., Dean F.B., Hurwitz J. ATP-dependent assembly of double hexamers of SV40T antigen at the viral origin of DNA replication. Nature 1989, 338:658-662.
    • (1989) Nature , vol.338 , pp. 658-662
    • Mastrangelo, I.A.1    Hough, P.V.2    Wall, J.S.3    Dodson, M.4    Dean, F.B.5    Hurwitz, J.6
  • 21
    • 0027267908 scopus 로고
    • A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication
    • Koonin E.V. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 1993, 21:2541-2547.
    • (1993) Nucleic Acids Res , vol.21 , pp. 2541-2547
    • Koonin, E.V.1
  • 22
    • 0030889245 scopus 로고    scopus 로고
    • In vivo interaction of human MCM heterohexameric complexes with chromatin. Possible involvement of ATP
    • Fujita M., Kiyono T., Hayashi Y., Ishibashi M. In vivo interaction of human MCM heterohexameric complexes with chromatin. Possible involvement of ATP. J Biol Chem 1997, 272:10928-10935.
    • (1997) J Biol Chem , vol.272 , pp. 10928-10935
    • Fujita, M.1    Kiyono, T.2    Hayashi, Y.3    Ishibashi, M.4
  • 23
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2
  • 24
    • 84867538324 scopus 로고    scopus 로고
    • The hexameric helicase DnaB adopts a nonplanar conformation during translocation
    • Itsathitphaisarn O., Wing R.A., Eliason W.K., Wang J., Steitz T.A. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 2012, 151:267-277.
    • (2012) Cell , vol.151 , pp. 267-277
    • Itsathitphaisarn, O.1    Wing, R.A.2    Eliason, W.K.3    Wang, J.4    Steitz, T.A.5
  • 25
    • 84897057195 scopus 로고    scopus 로고
    • Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps
    • Pandey M., Patel S.S. Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps. Cell Rep 2014, 6:1129-1138.
    • (2014) Cell Rep , vol.6 , pp. 1129-1138
    • Pandey, M.1    Patel, S.S.2
  • 26
    • 84897037131 scopus 로고    scopus 로고
    • Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase
    • Syed S., Pandey M., Patel S.S., Ha T. Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase. Cell Rep 2014, 6:1037-1045.
    • (2014) Cell Rep , vol.6 , pp. 1037-1045
    • Syed, S.1    Pandey, M.2    Patel, S.S.3    Ha, T.4
  • 27
    • 4644261530 scopus 로고    scopus 로고
    • Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method
    • Galletto R., Jezewska M.J., Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J Mol Biol 2004, 343:83-99.
    • (2004) J Mol Biol , vol.343 , pp. 83-99
    • Galletto, R.1    Jezewska, M.J.2    Bujalowski, W.3
  • 30
    • 84930635063 scopus 로고    scopus 로고
    • Cooperative base pair melting by helicase and polymerase positioned one nucleotide from each other
    • Nandakumar D., Pandey M., Patel S.S. Cooperative base pair melting by helicase and polymerase positioned one nucleotide from each other. Elife 2015, 4. 10.7554/eLife.06562.
    • (2015) Elife , vol.4
    • Nandakumar, D.1    Pandey, M.2    Patel, S.S.3
  • 31
    • 0023433855 scopus 로고
    • Supercoiling of the DNA template during transcription
    • Liu L.F., Wang J.C. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 1987, 84:7024-7027.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 7024-7027
    • Liu, L.F.1    Wang, J.C.2
  • 32
    • 0024279845 scopus 로고
    • Transcription generates positively and negatively supercoiled domains in the template
    • Wu H.Y., Shyy S.H., Wang J.C., Liu L.F. Transcription generates positively and negatively supercoiled domains in the template. Cell 1988, 53:433-440.
    • (1988) Cell , vol.53 , pp. 433-440
    • Wu, H.Y.1    Shyy, S.H.2    Wang, J.C.3    Liu, L.F.4
  • 34
    • 0015255258 scopus 로고
    • Electron microscopic studies of replicating and catenated colicin factor E1 DNA isolated from minicells (DNA replication)
    • Fuke M., Inselburg J. Electron microscopic studies of replicating and catenated colicin factor E1 DNA isolated from minicells (DNA replication). Proc Natl Acad Sci U S A 1972, 69:89-92.
    • (1972) Proc Natl Acad Sci U S A , vol.69 , pp. 89-92
    • Fuke, M.1    Inselburg, J.2
  • 35
    • 84875900370 scopus 로고    scopus 로고
    • A solution to release twisted DNA during chromosome replication by coupled DNA polymerases
    • Kurth I., Georgescu R.E., O'Donnell M.E. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 2013, 496:119-122.
    • (2013) Nature , vol.496 , pp. 119-122
    • Kurth, I.1    Georgescu, R.E.2    O'Donnell, M.E.3
  • 37
    • 0017055337 scopus 로고
    • Formation of catenated molecules by replication of colicin E1 plasmid DNA in cell extracts
    • Sakakibara Y., Suzuki K., Tomizawa J.I. Formation of catenated molecules by replication of colicin E1 plasmid DNA in cell extracts. J Mol Biol 1976, 108:569-582.
    • (1976) J Mol Biol , vol.108 , pp. 569-582
    • Sakakibara, Y.1    Suzuki, K.2    Tomizawa, J.I.3
  • 38
    • 44949208460 scopus 로고    scopus 로고
    • Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast
    • Baxter J., Diffley J.F. Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 2008, 30:790-802.
    • (2008) Mol Cell , vol.30 , pp. 790-802
    • Baxter, J.1    Diffley, J.F.2
  • 39
    • 33747621427 scopus 로고    scopus 로고
    • Visualizing polynucleotide polymerase machines at work
    • Steitz T.A. Visualizing polynucleotide polymerase machines at work. EMBO J 2006, 25:3458-3468.
    • (2006) EMBO J , vol.25 , pp. 3458-3468
    • Steitz, T.A.1
  • 40
    • 0033578701 scopus 로고    scopus 로고
    • Crystal structure of Thermus aquaticus core RNA polymerase at 3.3A resolution
    • Zhang G., Campbell E.A., Minakhin L., Richter C., Severinov K., Darst S.A. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3A resolution. Cell 1999, 98:811-824.
    • (1999) Cell , vol.98 , pp. 811-824
    • Zhang, G.1    Campbell, E.A.2    Minakhin, L.3    Richter, C.4    Severinov, K.5    Darst, S.A.6
  • 41
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8angstrom resolution
    • Cramer P., Bushnell D.A., Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8angstrom resolution. Science 2001, 292:1863-1876.
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 42
    • 33748146483 scopus 로고    scopus 로고
    • Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III
    • Lamers M.H., Georgescu R.E., Lee S.G., O'Donnell M., Kuriyan J. Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Cell 2006, 126:881-892.
    • (2006) Cell , vol.126 , pp. 881-892
    • Lamers, M.H.1    Georgescu, R.E.2    Lee, S.G.3    O'Donnell, M.4    Kuriyan, J.5
  • 45
    • 0028261701 scopus 로고
    • Single myosin molecule mechanics: piconewton forces and nanometre steps
    • Finer J.T., Simmons R.M., Spudich J.A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 1994, 368:113-119.
    • (1994) Nature , vol.368 , pp. 113-119
    • Finer, J.T.1    Simmons, R.M.2    Spudich, J.A.3
  • 46
    • 0028362896 scopus 로고
    • Force and velocity measured for single kinesin molecules
    • Svoboda K., Block S.M. Force and velocity measured for single kinesin molecules. Cell 1994, 77:773-784.
    • (1994) Cell , vol.77 , pp. 773-784
    • Svoboda, K.1    Block, S.M.2
  • 47
    • 84897057195 scopus 로고    scopus 로고
    • Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps
    • Pandey M., Patel S.S. Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps. Cell Rep 2014, 6:1129-1138.
    • (2014) Cell Rep , vol.6 , pp. 1129-1138
    • Pandey, M.1    Patel, S.S.2
  • 49
    • 84879682825 scopus 로고    scopus 로고
    • Transcription under torsion
    • Ma J., Bai L., Wang M.D. Transcription under torsion. Science 2013, 340:1580-1583.
    • (2013) Science , vol.340 , pp. 1580-1583
    • Ma, J.1    Bai, L.2    Wang, M.D.3
  • 50
    • 84893755427 scopus 로고    scopus 로고
    • Transcription-generated torsional stress destabilizes nucleosomes
    • Teves S.S., Henikoff S. Transcription-generated torsional stress destabilizes nucleosomes. Nat Struct Mol Biol 2014, 21:88-94.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 88-94
    • Teves, S.S.1    Henikoff, S.2
  • 51
    • 84885660614 scopus 로고    scopus 로고
    • Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss
    • Sheinin M.Y., Li M., Soltani M., Luger K., Wang M.D. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. Nat Commun 2013, 4:2579.
    • (2013) Nat Commun , vol.4 , pp. 2579
    • Sheinin, M.Y.1    Li, M.2    Soltani, M.3    Luger, K.4    Wang, M.D.5
  • 53
    • 84862776917 scopus 로고    scopus 로고
    • Intrinsic coupling of lagging-strand synthesis to chromatin assembly
    • Smith D.J., Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 2012, 483:434-438.
    • (2012) Nature , vol.483 , pp. 434-438
    • Smith, D.J.1    Whitehouse, I.2
  • 54
    • 84866147787 scopus 로고    scopus 로고
    • Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome
    • Rovinskiy N., Agbleke A.A., Chesnokova O., Pang Z., Higgins N.P. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 2012, 8:e1002845.
    • (2012) PLoS Genet , vol.8 , pp. e1002845
    • Rovinskiy, N.1    Agbleke, A.A.2    Chesnokova, O.3    Pang, Z.4    Higgins, N.P.5
  • 56
    • 84904582175 scopus 로고    scopus 로고
    • Mechanism of transcriptional bursting in bacteria
    • Chong S., Chen C., Ge H., Xie X.S. Mechanism of transcriptional bursting in bacteria. Cell 2014, 158:314-326.
    • (2014) Cell , vol.158 , pp. 314-326
    • Chong, S.1    Chen, C.2    Ge, H.3    Xie, X.S.4
  • 57
    • 79961225321 scopus 로고    scopus 로고
    • Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast
    • Sperling A.S., Jeong K.S., Kitada T., Grunstein M. Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. Proc Natl Acad Sci U S A 2011, 108:12693-12698.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 12693-12698
    • Sperling, A.S.1    Jeong, K.S.2    Kitada, T.3    Grunstein, M.4
  • 61
    • 0034704235 scopus 로고    scopus 로고
    • Generation of superhelical torsion by ATP-dependent chromatin remodeling activities
    • Havas K., Flaus A., Phelan M., Kingston R., Wade P.A., Lilley D.M., Owen-Hughes T. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 2000, 103:1133-1142.
    • (2000) Cell , vol.103 , pp. 1133-1142
    • Havas, K.1    Flaus, A.2    Phelan, M.3    Kingston, R.4    Wade, P.A.5    Lilley, D.M.6    Owen-Hughes, T.7
  • 62
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • Flaus A., Martin D.M., Barton G.J., Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 2006, 34:2887-2905.
    • (2006) Nucleic Acids Res , vol.34 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.2    Barton, G.J.3    Owen-Hughes, T.4
  • 63
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009, 78:273-304.
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 64
    • 18844457346 scopus 로고    scopus 로고
    • X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA
    • Durr H., Korner C., Muller M., Hickmann V., Hopfner K.P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 2005, 121:363-373.
    • (2005) Cell , vol.121 , pp. 363-373
    • Durr, H.1    Korner, C.2    Muller, M.3    Hickmann, V.4    Hopfner, K.P.5
  • 66
    • 77956522905 scopus 로고    scopus 로고
    • The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor
    • Hauk G., McKnight J.N., Nodelman I.M., Bowman G.D. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell 2010, 39:711-723.
    • (2010) Mol Cell , vol.39 , pp. 711-723
    • Hauk, G.1    McKnight, J.N.2    Nodelman, I.M.3    Bowman, G.D.4
  • 69
    • 84884225242 scopus 로고    scopus 로고
    • Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1
    • Nguyen V.Q., Ranjan A., Stengel F., Wei D., Aebersold R., Wu C., Leschziner A.E. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 2013, 154:1220-1231.
    • (2013) Cell , vol.154 , pp. 1220-1231
    • Nguyen, V.Q.1    Ranjan, A.2    Stengel, F.3    Wei, D.4    Aebersold, R.5    Wu, C.6    Leschziner, A.E.7
  • 71
    • 34247638974 scopus 로고    scopus 로고
    • Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method
    • Leschziner A.E., Saha A., Wittmeyer J., Zhang Y., Bustamante C., Cairns B.R., Nogales E. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc Natl Acad Sci U S A 2007, 104:4913-4918.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 4913-4918
    • Leschziner, A.E.1    Saha, A.2    Wittmeyer, J.3    Zhang, Y.4    Bustamante, C.5    Cairns, B.R.6    Nogales, E.7
  • 73
    • 33744916194 scopus 로고    scopus 로고
    • Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
    • Zofall M., Persinger J., Kassabov S.R., Bartholomew B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 2006, 13:339-346.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 339-346
    • Zofall, M.1    Persinger, J.2    Kassabov, S.R.3    Bartholomew, B.4
  • 78
    • 84924589156 scopus 로고    scopus 로고
    • Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility
    • Ngo T.T., Zhang Q., Zhou R., Yodh J.G., Ha T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 2015, 160:1135-1144.
    • (2015) Cell , vol.160 , pp. 1135-1144
    • Ngo, T.T.1    Zhang, Q.2    Zhou, R.3    Yodh, J.G.4    Ha, T.5
  • 81
    • 84873301476 scopus 로고    scopus 로고
    • ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps
    • Deindl S., Hwang W.L., Hota S.K., Blosser T.R., Prasad P., Bartholomew B., Zhuang X. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 2013, 152:442-452.
    • (2013) Cell , vol.152 , pp. 442-452
    • Deindl, S.1    Hwang, W.L.2    Hota, S.K.3    Blosser, T.R.4    Prasad, P.5    Bartholomew, B.6    Zhuang, X.7
  • 82
    • 0018261420 scopus 로고
    • Promoter-specific inhibition of transcription by antibiotics which act on DNA gyrase
    • Smith C.L., Kubo M., Imamoto F. Promoter-specific inhibition of transcription by antibiotics which act on DNA gyrase. Nature 1978, 275:420-423.
    • (1978) Nature , vol.275 , pp. 420-423
    • Smith, C.L.1    Kubo, M.2    Imamoto, F.3
  • 83
    • 0021751199 scopus 로고
    • Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes
    • Kaguni J.M., Kornberg A. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 1984, 38:183-190.
    • (1984) Cell , vol.38 , pp. 183-190
    • Kaguni, J.M.1    Kornberg, A.2
  • 84
    • 0022508558 scopus 로고
    • Topoisomerase I interacts with transcribed regions in Drosophila cells
    • Gilmour D.S., Pflugfelder G., Wang J.C., Lis J.T. Topoisomerase I interacts with transcribed regions in Drosophila cells. Cell 1986, 44:401-407.
    • (1986) Cell , vol.44 , pp. 401-407
    • Gilmour, D.S.1    Pflugfelder, G.2    Wang, J.C.3    Lis, J.T.4
  • 85
    • 84878947735 scopus 로고    scopus 로고
    • New mechanistic and functional insights into DNA topoisomerases
    • Chen S.H., Chan N.L., Hsieh T.S. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013, 82:139-170.
    • (2013) Annu Rev Biochem , vol.82 , pp. 139-170
    • Chen, S.H.1    Chan, N.L.2    Hsieh, T.S.3
  • 86
    • 0033985080 scopus 로고    scopus 로고
    • GHKL, an emergent ATPase/kinase superfamily
    • Dutta R., Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 2000, 25:24-28.
    • (2000) Trends Biochem Sci , vol.25 , pp. 24-28
    • Dutta, R.1    Inouye, M.2
  • 87
    • 80055065448 scopus 로고    scopus 로고
    • The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks
    • Bates A.D., Berger J.M., Maxwell A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res 2011, 39:6327-6339.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6327-6339
    • Bates, A.D.1    Berger, J.M.2    Maxwell, A.3
  • 88
    • 27744591551 scopus 로고    scopus 로고
    • Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase
    • Wei H., Ruthenburg A.J., Bechis S.K., Verdine G.L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J Biol Chem 2005, 280:37041-37047.
    • (2005) J Biol Chem , vol.280 , pp. 37041-37047
    • Wei, H.1    Ruthenburg, A.J.2    Bechis, S.K.3    Verdine, G.L.4
  • 89
    • 33749129568 scopus 로고    scopus 로고
    • Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol
    • Corbett K.D., Berger J.M. Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol. Nucleic Acids Res 2006, 34:4269-4277.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4269-4277
    • Corbett, K.D.1    Berger, J.M.2
  • 90
    • 84927631269 scopus 로고    scopus 로고
    • Structure of the N-terminal Gyrase B fragment in complex with ADPPi reveals rigid-body motion induced by ATP hydrolysis
    • Stanger F.V., Dehio C., Schirmer T. Structure of the N-terminal Gyrase B fragment in complex with ADPPi reveals rigid-body motion induced by ATP hydrolysis. PLoS ONE 2014, 9:e107289.
    • (2014) PLoS ONE , vol.9 , pp. e107289
    • Stanger, F.V.1    Dehio, C.2    Schirmer, T.3
  • 91
    • 0001534829 scopus 로고
    • Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme
    • Sugino A., Peebles C.L., Kreuzer K.N., Cozzarelli N.R. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A 1977, 74:4767-4771.
    • (1977) Proc Natl Acad Sci U S A , vol.74 , pp. 4767-4771
    • Sugino, A.1    Peebles, C.L.2    Kreuzer, K.N.3    Cozzarelli, N.R.4
  • 92
    • 0018039318 scopus 로고
    • DNA-DNA gyrase complex: the wrapping of the DNA duplex outside the enzyme
    • Liu L.F., Wang J.C. DNA-DNA gyrase complex: the wrapping of the DNA duplex outside the enzyme. Cell 1978, 15:979-984.
    • (1978) Cell , vol.15 , pp. 979-984
    • Liu, L.F.1    Wang, J.C.2
  • 93
    • 0004952211 scopus 로고
    • Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity
    • Higgins N.P., Peebles C.L., Sugino A., Cozzarelli N.R. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc Natl Acad Sci U S A 1978, 75:1773-1777.
    • (1978) Proc Natl Acad Sci U S A , vol.75 , pp. 1773-1777
    • Higgins, N.P.1    Peebles, C.L.2    Sugino, A.3    Cozzarelli, N.R.4
  • 94
    • 84860751723 scopus 로고    scopus 로고
    • ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA
    • Basu A., Schoeffler A.J., Berger J.M., Bryant Z. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA. Nat Struct Mol Biol 2012, 19:538-546. S1.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 538-546
    • Basu, A.1    Schoeffler, A.J.2    Berger, J.M.3    Bryant, Z.4
  • 95
    • 84885630805 scopus 로고    scopus 로고
    • Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase
    • Papillon J., Menetret J.F., Batisse C., Helye R., Schultz P., Potier N., Lamour V. Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase. Nucleic Acids Res 2013, 41:7815-7827.
    • (2013) Nucleic Acids Res , vol.41 , pp. 7815-7827
    • Papillon, J.1    Menetret, J.F.2    Batisse, C.3    Helye, R.4    Schultz, P.5    Potier, N.6    Lamour, V.7
  • 97
    • 80052181150 scopus 로고    scopus 로고
    • DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage
    • Gubaev A., Klostermeier D. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage. Proc Natl Acad Sci U S A 2011, 108:14085-14090.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 14085-14090
    • Gubaev, A.1    Klostermeier, D.2
  • 98
    • 84906704724 scopus 로고    scopus 로고
    • The maintenance of chromosome structure: positioning and functioning of SMC complexes
    • Jeppsson K., Kanno T., Shirahige K., Sjogren C. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 2014, 15:601-614.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 601-614
    • Jeppsson, K.1    Kanno, T.2    Shirahige, K.3    Sjogren, C.4
  • 99
    • 0027943721 scopus 로고
    • A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro
    • Hirano T., Mitchison T.J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 1994, 79:449-458.
    • (1994) Cell , vol.79 , pp. 449-458
    • Hirano, T.1    Mitchison, T.J.2
  • 100
    • 0030885925 scopus 로고    scopus 로고
    • Cohesins: chromosomal proteins that prevent premature separation of sister chromatids
    • Michaelis C., Ciosk R., Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997, 91:35-45.
    • (1997) Cell , vol.91 , pp. 35-45
    • Michaelis, C.1    Ciosk, R.2    Nasmyth, K.3
  • 101
    • 0032076248 scopus 로고    scopus 로고
    • The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response
    • Carney J.P., Maser R.S., Olivares H., Davis E.M., Le Beau M., Yates J.R., Hays L., Morgan W.F., Petrini J.H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998, 93:477-486.
    • (1998) Cell , vol.93 , pp. 477-486
    • Carney, J.P.1    Maser, R.S.2    Olivares, H.3    Davis, E.M.4    Le Beau, M.5    Yates, J.R.6    Hays, L.7    Morgan, W.F.8    Petrini, J.H.9
  • 102
    • 84887322004 scopus 로고    scopus 로고
    • High-resolution mapping of the spatial organization of a bacterial chromosome
    • Le T.B., Imakaev M.V., Mirny L.A., Laub M.T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 2013, 342:731-734.
    • (2013) Science , vol.342 , pp. 731-734
    • Le, T.B.1    Imakaev, M.V.2    Mirny, L.A.3    Laub, M.T.4
  • 105
    • 84899902780 scopus 로고    scopus 로고
    • The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
    • Nolivos S., Sherratt D. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 2014, 38:380-392.
    • (2014) FEMS Microbiol Rev , vol.38 , pp. 380-392
    • Nolivos, S.1    Sherratt, D.2
  • 106
    • 0037459376 scopus 로고    scopus 로고
    • Chromosomal cohesin forms a ring
    • Gruber S., Haering C.H., Nasmyth K. Chromosomal cohesin forms a ring. Cell 2003, 112:765-777.
    • (2003) Cell , vol.112 , pp. 765-777
    • Gruber, S.1    Haering, C.H.2    Nasmyth, K.3
  • 107
    • 84930616986 scopus 로고    scopus 로고
    • SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis
    • Wilhelm L., Burmann F., Minnen A., Shin H.C., Toseland C.P., Oh B.H., Gruber S. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife 2015, 4. 10.7554/eLife.06659.
    • (2015) Elife , vol.4
    • Wilhelm, L.1    Burmann, F.2    Minnen, A.3    Shin, H.C.4    Toseland, C.P.5    Oh, B.H.6    Gruber, S.7
  • 108
    • 84892617115 scopus 로고    scopus 로고
    • Biochemical reconstitution of topological DNA binding by the cohesin ring
    • Murayama Y., Uhlmann F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 2014, 505:367-371.
    • (2014) Nature , vol.505 , pp. 367-371
    • Murayama, Y.1    Uhlmann, F.2
  • 110
    • 3042598127 scopus 로고    scopus 로고
    • Real-time detection of single-molecule DNA compaction by condensin I
    • Strick T.R., Kawaguchi T., Hirano T. Real-time detection of single-molecule DNA compaction by condensin I. Curr Biol 2004, 14:874-880.
    • (2004) Curr Biol , vol.14 , pp. 874-880
    • Strick, T.R.1    Kawaguchi, T.2    Hirano, T.3
  • 111
    • 41649114779 scopus 로고    scopus 로고
    • MukB acts as a macromolecular clamp in DNA condensation
    • Cui Y., Petrushenko Z.M., Rybenkov V.V. MukB acts as a macromolecular clamp in DNA condensation. Nat Struct Mol Biol 2008, 15:411-418.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 411-418
    • Cui, Y.1    Petrushenko, Z.M.2    Rybenkov, V.V.3
  • 112
    • 84880206175 scopus 로고    scopus 로고
    • The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation
    • Sun M., Nishino T., Marko J.F. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res 2013, 41:6149-6160.
    • (2013) Nucleic Acids Res , vol.41 , pp. 6149-6160
    • Sun, M.1    Nishino, T.2    Marko, J.F.3
  • 114
    • 84857334794 scopus 로고    scopus 로고
    • Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope
    • Fuentes-Perez M.E., Gwynn E.J., Dillingham M.S., Moreno-Herrero F. Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope. Biophys J 2012, 102:839-848.
    • (2012) Biophys J , vol.102 , pp. 839-848
    • Fuentes-Perez, M.E.1    Gwynn, E.J.2    Dillingham, M.S.3    Moreno-Herrero, F.4
  • 117
    • 30744441604 scopus 로고    scopus 로고
    • Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions
    • Hirano M., Hirano T. Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions. Mol Cell 2006, 21:175-186.
    • (2006) Mol Cell , vol.21 , pp. 175-186
    • Hirano, M.1    Hirano, T.2
  • 121
    • 84928928161 scopus 로고    scopus 로고
    • Crystal structures of the E. coli transcription initiation complexes with a complete bubble
    • Zuo Y., Steitz T.A. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol Cell 2015, 58:534-540.
    • (2015) Mol Cell , vol.58 , pp. 534-540
    • Zuo, Y.1    Steitz, T.A.2
  • 123
    • 51249093024 scopus 로고    scopus 로고
    • Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit
    • Wing R.A., Bailey S., Steitz T.A. Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit. J Mol Biol 2008, 382:859-869.
    • (2008) J Mol Biol , vol.382 , pp. 859-869
    • Wing, R.A.1    Bailey, S.2    Steitz, T.A.3
  • 124
    • 84869094439 scopus 로고    scopus 로고
    • Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity
    • Schmidt B.H., Osheroff N., Berger J.M. Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat Struct Mol Biol 2012, 19:1147-1154.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 1147-1154
    • Schmidt, B.H.1    Osheroff, N.2    Berger, J.M.3
  • 125
    • 2442611949 scopus 로고    scopus 로고
    • The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold
    • Corbett K.D., Shultzaberger R.K., Berger J.M. The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proc Natl Acad Sci U S A 2004, 101:7293-7298.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 7293-7298
    • Corbett, K.D.1    Shultzaberger, R.K.2    Berger, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.