-
1
-
-
84923902089
-
Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polalpha/Primase/Ctf4 Complex
-
25661486
-
M.Fumasoni, K.Zwicky, F.Vanoli, M.Lopes, D.Branzei. Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polalpha/Primase/Ctf4 Complex. Mol Cell 2015; 57:812-23; PMID:25661486; http://dx.doi.org/10.1016/j.molcel.2014.12.038
-
(2015)
Mol Cell
, vol.57
, pp. 812-823
-
-
Fumasoni, M.1
Zwicky, K.2
Vanoli, F.3
Lopes, M.4
Branzei, D.5
-
2
-
-
77649165394
-
Maintaining genome stability at the replication fork
-
20177396
-
D.Branzei, M.Foiani. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 2010; 11:208-19; PMID:20177396; http://dx.doi.org/10.1038/nrm2852
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 208-219
-
-
Branzei, D.1
Foiani, M.2
-
3
-
-
80052768689
-
Ubiquitin family modifications and template switching
-
21539841
-
D.Branzei. Ubiquitin family modifications and template switching. FEBS Lett 2011; 585:2810-7; PMID:21539841; http://dx.doi.org/10.1016/j.febslet.2011.04.053
-
(2011)
FEBS Lett
, vol.585
, pp. 2810-2817
-
-
Branzei, D.1
-
4
-
-
84873425410
-
Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway
-
23260657
-
G.I.Karras, M.Fumasoni, G.Sienski, F.Vanoli, D.Branzei, S.Jentsch. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 2013; 49:536-46; PMID:23260657; http://dx.doi.org/10.1016/j.molcel.2012.11.016
-
(2013)
Mol Cell
, vol.49
, pp. 536-546
-
-
Karras, G.I.1
Fumasoni, M.2
Sienski, G.3
Vanoli, F.4
Branzei, D.5
Jentsch, S.6
-
5
-
-
84897888392
-
DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity
-
24473148
-
V.Gonzalez-Huici, B.Szakal, M.Urulangodi, I.Psakhye, F.Castellucci, D.Menolfi, E.Rajakumara, M.Fumasoni, R.Bermejo, S.Jentsch, et al. DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 2014; 33:327-40; PMID:24473148; http://dx.doi.org/10.1002/embj.201387425
-
(2014)
EMBO J
, vol.33
, pp. 327-340
-
-
Gonzalez-Huici, V.1
Szakal, B.2
Urulangodi, M.3
Psakhye, I.4
Castellucci, F.5
Menolfi, D.6
Rajakumara, E.7
Fumasoni, M.8
Bermejo, R.9
Jentsch, S.10
-
6
-
-
80052919408
-
Mutation rates across budding yeast chromosome VI are correlated with replication timing
-
21666225
-
G.I.Lang, A.W.Murray. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 2011; 3:799-811; PMID:21666225; http://dx.doi.org/10.1093/gbe/evr054
-
(2011)
Genome Biol Evol
, vol.3
, pp. 799-811
-
-
Lang, G.I.1
Murray, A.W.2
-
7
-
-
63449141981
-
Human mutation rate associated with DNA replication timing
-
19287383
-
J.A.Stamatoyannopoulos, I.Adzhubei, R.E.Thurman, G.V.Kryukov, S.M.Mirkin, S.R.Sunyaev. Human mutation rate associated with DNA replication timing. Nat Genet 2009; 41:393-5; PMID:19287383; http://dx.doi.org/10.1038/ng.363
-
(2009)
Nat Genet
, vol.41
, pp. 393-395
-
-
Stamatoyannopoulos, J.A.1
Adzhubei, I.2
Thurman, R.E.3
Kryukov, G.V.4
Mirkin, S.M.5
Sunyaev, S.R.6
-
8
-
-
84925153192
-
The effects of chromatin organization on variation in mutation rates in the genome
-
25732611
-
K.D.Makova, R.C.Hardison. The effects of chromatin organization on variation in mutation rates in the genome. Nat Rev Genet 2015; 16:213-23; PMID:25732611; http://dx.doi.org/10.1038/nrg3890
-
(2015)
Nat Rev Genet
, vol.16
, pp. 213-223
-
-
Makova, K.D.1
Hardison, R.C.2
-
9
-
-
84865248380
-
Chromatin organization is a major influence on regional mutation rates in human cancer cells
-
22820252
-
B.Schuster-Bockler, B.Lehner. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 2012; 488:504-7; PMID:22820252; http://dx.doi.org/10.1038/nature11273
-
(2012)
Nature
, vol.488
, pp. 504-507
-
-
Schuster-Bockler, B.1
Lehner, B.2
-
10
-
-
84930012955
-
DNA replication origin activation in space and time
-
25999062
-
M.Fragkos, O.Ganier, P.Coulombe, M.Mechali. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 2015; 16:360-74; PMID:25999062; http://dx.doi.org/10.1038/nrm4002
-
(2015)
Nat Rev Mol Cell Biol
, vol.16
, pp. 360-374
-
-
Fragkos, M.1
Ganier, O.2
Coulombe, P.3
Mechali, M.4
-
11
-
-
77951699996
-
The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
-
20403322
-
G.I.Karras, S.Jentsch. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 2010; 141:255-67; PMID:20403322; http://dx.doi.org/10.1016/j.cell.2010.02.028
-
(2010)
Cell
, vol.141
, pp. 255-267
-
-
Karras, G.I.1
Jentsch, S.2
-
12
-
-
77953694683
-
Ubiquitin-dependent DNA damage bypass is separable from genome replication
-
20453836
-
Y.Daigaku, A.A.Davies, H.D.Ulrich. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 2010; 465:951-5; PMID:20453836; http://dx.doi.org/10.1038/nature09097
-
(2010)
Nature
, vol.465
, pp. 951-955
-
-
Daigaku, Y.1
Davies, A.A.2
Ulrich, H.D.3
-
13
-
-
84922335476
-
Visualization of recombination-mediated damage bypass by template switching
-
25195051
-
M.Giannattasio, K.Zwicky, C.Follonier, M.Foiani, M.Lopes, D.Branzei. Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 2014; 21:884-92; PMID:25195051; http://dx.doi.org/10.1038/nsmb.2888
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 884-892
-
-
Giannattasio, M.1
Zwicky, K.2
Follonier, C.3
Foiani, M.4
Lopes, M.5
Branzei, D.6
-
14
-
-
84902304914
-
A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome
-
24805245
-
A.C.Simon, J.C.Zhou, R.L.Perera, F.van Deursen, C.Evrin, M.E.Ivanova, M.L.Kilkenny, L.Renault, S.Kjaer, D.Matak-Vinković, et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 2014; 510:293-7; PMID:24805245; http://dx.doi.org/10.1038/nature13234
-
(2014)
Nature
, vol.510
, pp. 293-297
-
-
Simon, A.C.1
Zhou, J.C.2
Perera, R.L.3
van Deursen, F.4
Evrin, C.5
Ivanova, M.E.6
Kilkenny, M.L.7
Renault, L.8
Kjaer, S.9
Matak-Vinković, D.10
-
15
-
-
0035051062
-
Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
-
11287619
-
J.S.Hanna, E.S.Kroll, V.Lundblad, F.A.Spencer. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 2001; 21:3144-58; PMID:11287619; http://dx.doi.org/10.1128/MCB.21.9.3144-3158.2001
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3144-3158
-
-
Hanna, J.S.1
Kroll, E.S.2
Lundblad, V.3
Spencer, F.A.4
-
17
-
-
34547131331
-
Genetic dissection of parallel sister-chromatid cohesion pathways
-
17483413
-
H.Xu, C.Boone, G.W.Brown. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 2007; 176:1417-29; PMID:17483413; http://dx.doi.org/10.1534/genetics.107.072876
-
(2007)
Genetics
, vol.176
, pp. 1417-1429
-
-
Xu, H.1
Boone, C.2
Brown, G.W.3
-
18
-
-
84867399846
-
Cohesin association to replication sites depends on rad50 and promotes fork restart
-
22885006
-
M.Tittel-Elmer, A.Lengronne, M.B.Davidson, J.Bacal, P.Francois, M.Hohl, J.H.Petrini, P.Pasero, J.A.Cobb. Cohesin association to replication sites depends on rad50 and promotes fork restart. Mol Cell 2012; 48:98-108; PMID:22885006; http://dx.doi.org/10.1016/j.molcel.2012.07.004
-
(2012)
Mol Cell
, vol.48
, pp. 98-108
-
-
Tittel-Elmer, M.1
Lengronne, A.2
Davidson, M.B.3
Bacal, J.4
Francois, P.5
Hohl, M.6
Petrini, J.H.7
Pasero, P.8
Cobb, J.A.9
-
19
-
-
77957363057
-
Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes
-
S.Covo, J.W.Westmoreland, D.A.Gordenin, M.A.Resnick. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genetics 2010; 6:e1001006
-
(2010)
PLoS Genetics
, vol.6
, pp. e1001006
-
-
Covo, S.1
Westmoreland, J.W.2
Gordenin, D.A.3
Resnick, M.A.4
-
20
-
-
0030474371
-
GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion
-
8994824
-
A.F.Straight, A.S.Belmont, C.C.Robinett, A.W.Murray. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 1996; 6:1599-608; PMID:8994824; http://dx.doi.org/10.1016/S0960-9822(02)70783-5
-
(1996)
Curr Biol
, vol.6
, pp. 1599-1608
-
-
Straight, A.F.1
Belmont, A.S.2
Robinett, C.C.3
Murray, A.W.4
-
21
-
-
72449183211
-
Establishment of sister chromatid cohesion
-
20064425
-
R.V.Skibbens. Establishment of sister chromatid cohesion. Curr Biol 2009; 19:R1126-32; PMID:20064425; http://dx.doi.org/10.1016/j.cub.2009.10.067
-
(2009)
Curr Biol
, vol.19
, pp. R1126-R1132
-
-
Skibbens, R.V.1
-
22
-
-
84874362586
-
Replication stress links structural and numerical cancer chromosomal instability
-
23446422
-
R.A.Burrell, S.E.McClelland, D.Endesfelder, P.Groth, M.C.Weller, N.Shaikh, E.Domingo, N.Kanu, S.M.Dewhurst, E.Gronroos, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013; 494:492-6; PMID:23446422; http://dx.doi.org/10.1038/nature11935
-
(2013)
Nature
, vol.494
, pp. 492-496
-
-
Burrell, R.A.1
McClelland, S.E.2
Endesfelder, D.3
Groth, P.4
Weller, M.C.5
Shaikh, N.6
Domingo, E.7
Kanu, N.8
Dewhurst, S.M.9
Gronroos, E.10
-
23
-
-
84901419546
-
Cohesin in cancer: chromosome segregation and beyond
-
24854081
-
A.Losada. Cohesin in cancer: chromosome segregation and beyond. Nat Rev Cancer 2014; 14:389-93; PMID:24854081; http://dx.doi.org/10.1038/nrc3743
-
(2014)
Nat Rev Cancer
, vol.14
, pp. 389-393
-
-
Losada, A.1
|