-
1
-
-
79960556965
-
Epigenome-wide association studies for common human diseases
-
Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011; 12(8):529-41. doi: 10.1038/nrg3000.
-
(2011)
Nat Rev Genet
, vol.12
, Issue.8
, pp. 529-541
-
-
Rakyan, V.K.1
Down, T.A.2
Balding, D.J.3
Beck, S.4
-
2
-
-
84867185999
-
Heterogeneity in white blood cells has potential to confound dna methylation measurements
-
Adalsteinsson BT, Gudnason H, Aspelund T, Harris TB, Launer LJ, Eiriksdottir G, Smith AV, Gudnason V. Heterogeneity in white blood cells has potential to confound dna methylation measurements. PLoS ONE. 2012; 7(10):46705. doi: 10.1371/journal.pone.0046705.
-
(2012)
PLoS ONE
, vol.7
, Issue.10
, pp. 46705
-
-
Adalsteinsson, B.T.1
Gudnason, H.2
Aspelund, T.3
Harris, T.B.4
Launer, L.J.5
Eiriksdottir, G.6
Smith, A.V.7
Gudnason, V.8
-
3
-
-
84864359044
-
Differential dna methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility
-
Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahln SE, Greco D, Sderhll C, Scheynius A, Kere J. Differential dna methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012; 7(7):41361. doi: 10.1371/journal.pone.0041361.
-
(2012)
PLoS ONE
, vol.7
, Issue.7
, pp. 41361
-
-
Reinius, L.E.1
Acevedo, N.2
Joerink, M.3
Pershagen, G.4
Dahln, S.E.5
Greco, D.6
Sderhll, C.7
Scheynius, A.8
Kere, J.9
-
4
-
-
84864822325
-
Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers
-
Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, Nelson HH, Karagas MR, Wiencke JK, Kelsey KT. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev. 2012; 21(8):1293-302. doi: 10.1158/1055-9965.EPI-12-0361.
-
(2012)
Cancer Epidemiol Biomarkers Prev
, vol.21
, Issue.8
, pp. 1293-1302
-
-
Koestler, D.C.1
Marsit, C.J.2
Christensen, B.C.3
Accomando, W.4
Langevin, S.M.5
Houseman, E.A.6
Nelson, H.H.7
Karagas, M.R.8
Wiencke, J.K.9
Kelsey, K.T.10
-
5
-
-
84872260642
-
Factors underlying variable dna methylation in a human community cohort
-
Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS. Factors underlying variable dna methylation in a human community cohort. Proc Natl Acad Sci U S A. 2012; 109 Suppl 2:17253-60. doi: 10.1073/pnas.1121249109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 17253-17260
-
-
Lam, L.L.1
Emberly, E.2
Fraser, H.B.3
Neumann, S.M.4
Chen, E.5
Miller, G.E.6
Kobor, M.S.7
-
6
-
-
84955707066
-
Dna methylation in whole blood: Uses and challenges
-
Houseman EA, Kim S, Kelsey KT, Wiencke JK. Dna methylation in whole blood: Uses and challenges. Curr Environ Health Rep. 2015; 2(2):145-54. doi: 10.1007/s40572-015-0050-3.
-
(2015)
Curr Environ Health Rep
, vol.2
, Issue.2
, pp. 145-154
-
-
Houseman, E.A.1
Kim, S.2
Kelsey, K.T.3
Wiencke, J.K.4
-
7
-
-
84884828422
-
Recommendations for the design and analysis of epigenome-wide association studies
-
Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, Houseman EA, Izzi B, Kelsey KT, Meissner A, Milosavljevic A, Siegmund KD, Bock C, Irizarry RA. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013; 10(10):949-55. doi: 10.1038/nmeth.2632.
-
(2013)
Nat Methods
, vol.10
, Issue.10
, pp. 949-955
-
-
Michels, K.B.1
Binder, A.M.2
Dedeurwaerder, S.3
Epstein, C.B.4
Greally, J.M.5
Gut, I.6
Houseman, E.A.7
Izzi, B.8
Kelsey, K.T.9
Meissner, A.10
Milosavljevic, A.11
Siegmund, K.D.12
Bock, C.13
Irizarry, R.A.14
-
8
-
-
84893192328
-
Accounting for cellular heterogeneity is critical in epigenome-wide association studies
-
Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014; 15(2):31. doi: 10.1186/gb-2014-15-2-r31.
-
(2014)
Genome Biol
, vol.15
, Issue.2
, pp. 31
-
-
Jaffe, A.E.1
Irizarry, R.A.2
-
9
-
-
84906825475
-
Grasping nettles: cellular heterogeneity and other confounders in epigenome-wide association studies
-
Liang L, Cookson WOC. Grasping nettles: cellular heterogeneity and other confounders in epigenome-wide association studies. Hum Mol Genet. 2014; 23(R1):83-8. doi: 10.1093/hmg/ddu284.
-
(2014)
Hum Mol Genet
, vol.23
, Issue.R1
, pp. 83-88
-
-
Liang, L.1
Cookson, W.O.C.2
-
10
-
-
84923345444
-
Age-related variations in the methylome associated with gene expression in human monocytes and t cells
-
Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, Burke G, Post W, Shea S, Jacobs DRJr, Stunnenberg H, Kritchevsky SB, Hoeschele I, McCall CE, Herrington DM, Tracy RP, Liu Y. Age-related variations in the methylome associated with gene expression in human monocytes and t cells. Nat Commun. 2014; 5:5366. doi: 10.1038/ncomms6366.
-
(2014)
Nat Commun
, vol.5
, pp. 5366
-
-
Reynolds, L.M.1
Taylor, J.R.2
Ding, J.3
Lohman, K.4
Johnson, C.5
Siscovick, D.6
Burke, G.7
Post, W.8
Shea, S.9
Jacobs, D.R.J.10
Stunnenberg, H.11
Kritchevsky, S.B.12
Hoeschele, I.13
McCall, C.E.14
Herrington, D.M.15
Tracy, R.P.16
Liu, Y.17
-
11
-
-
84908157912
-
Characteristic dna methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma
-
Gunawardhana LP, Gibson PG, Simpson JL, Benton MC, Lea RA, Baines KJ. Characteristic dna methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics. 2014; 9(9):1302-16. doi: 10.4161/epi.33066.
-
(2014)
Epigenetics
, vol.9
, Issue.9
, pp. 1302-1316
-
-
Gunawardhana, L.P.1
Gibson, P.G.2
Simpson, J.L.3
Benton, M.C.4
Lea, R.A.5
Baines, K.J.6
-
12
-
-
84930738510
-
The epigenetic clock is correlated with physical and cognitive fitness in the lothian birth cohort 1936.
-
Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, Gibson J, Redmond P, Cox SR, Pattie A, Corley J, Taylor A, Murphy L, Starr JM, Horvath S, Visscher PM, Wray NR, Deary IJ. The epigenetic clock is correlated with physical and cognitive fitness in the lothian birth cohort 1936. Int J Epidemiol. 2015. doi: 10.1093/ije/dyu277.
-
(2015)
Int J Epidemiol
-
-
Marioni, R.E.1
Shah, S.2
McRae, A.F.3
Ritchie, S.J.4
Muniz-Terrera, G.5
Harris, S.E.6
Gibson, J.7
Redmond, P.8
Cox, S.R.9
Pattie, A.10
Corley, J.11
Taylor, A.12
Murphy, L.13
Starr, J.M.14
Horvath, S.15
Visscher, P.M.16
Wray, N.R.17
Deary, I.J.18
-
13
-
-
84860637797
-
Dna methylation arrays as surrogate measures of cell mixture distribution
-
Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. Dna methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012; 13:86. doi: 10.1186/1471-2105-13-86.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 86
-
-
Houseman, E.A.1
Accomando, W.P.2
Koestler, D.C.3
Christensen, B.C.4
Marsit, C.J.5
Nelson, H.H.6
Wiencke, J.K.7
Kelsey, K.T.8
-
14
-
-
84895540377
-
Epigenome-wide association studies without the need for cell-type composition
-
Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide association studies without the need for cell-type composition. Nat Methods. 2014; 11(3):309-11. doi: 10.1038/nmeth.2815.
-
(2014)
Nat Methods
, vol.11
, Issue.3
, pp. 309-311
-
-
Zou, J.1
Lippert, C.2
Heckerman, D.3
Aryee, M.4
Listgarten, J.5
-
15
-
-
84900824657
-
Reference-free cell mixture adjustments in analysis of dna methylation data
-
Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of dna methylation data. Bioinformatics. 2014; 30(10):1431-9. doi: 10.1093/bioinformatics/btu029.
-
(2014)
Bioinformatics
, vol.30
, Issue.10
, pp. 1431-1439
-
-
Houseman, E.A.1
Molitor, J.2
Marsit, C.J.3
-
16
-
-
84873576566
-
Epigenome-wide association data implicate dna methylation as an intermediary of genetic risk in rheumatoid arthritis
-
Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekstrm TJ, Feinberg AP. Epigenome-wide association data implicate dna methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013; 31(2):142-7. doi: 10.1038/nbt.2487.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.2
, pp. 142-147
-
-
Liu, Y.1
Aryee, M.J.2
Padyukov, L.3
Fallin, M.D.4
Hesselberg, E.5
Runarsson, A.6
Reinius, L.7
Acevedo, N.8
Taub, M.9
Ronninger, M.10
Shchetynsky, K.11
Scheynius, A.12
Kere, J.13
Alfredsson, L.14
Klareskog, L.15
Ekstrm, T.J.16
Feinberg, A.P.17
-
17
-
-
84893162063
-
Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer
-
Koestler DC, Chalise P, Cicek MS, Cunningham JM, Armasu S, Larson MC, Chien J, Block M, Kalli KR, Sellers TA, Fridley BL, Goode EL. Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer. BMC Med Genomics. 2014; 7:8. doi: 10.1186/1755-8794-7-8.
-
(2014)
BMC Med Genomics
, vol.7
, pp. 8
-
-
Koestler, D.C.1
Chalise, P.2
Cicek, M.S.3
Cunningham, J.M.4
Armasu, S.5
Larson, M.C.6
Chien, J.7
Block, M.8
Kalli, K.R.9
Sellers, T.A.10
Fridley, B.L.11
Goode, E.L.12
-
18
-
-
84881010102
-
Differential dna methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero
-
Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ. Differential dna methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect. 2013; 121(8):971-7. doi: 10.1289/ehp.1205925.
-
(2013)
Environ Health Perspect
, vol.121
, Issue.8
, pp. 971-977
-
-
Koestler, D.C.1
Avissar-Whiting, M.2
Houseman, E.A.3
Karagas, M.R.4
Marsit, C.J.5
-
19
-
-
84928819497
-
An epigenome-wide association study of total serum immunoglobulin e concentration
-
Liang L, Willis-Owen SAG, Laprise C, Wong KCC, Davies GA, Hudson TJ, Binia A, Hopkin JM, Yang IV, Grundberg E, Busche S, Hudson M, Rnnblom L, Pastinen TM, Schwartz DA, Lathrop GM, Moffatt MF, Cookson WOCM. An epigenome-wide association study of total serum immunoglobulin e concentration. Nature. 2015; 520(7549):670-4. doi: 10.1038/nature14125.
-
(2015)
Nature
, vol.520
, Issue.7549
, pp. 670-674
-
-
Liang, L.1
Willis-Owen, S.A.G.2
Laprise, C.3
Wong, K.C.C.4
Davies, G.A.5
Hudson, T.J.6
Binia, A.7
Hopkin, J.M.8
Yang, I.V.9
Grundberg, E.10
Busche, S.11
Hudson, M.12
Rnnblom, L.13
Pastinen, T.M.14
Schwartz, D.A.15
Lathrop, G.M.16
Moffatt, M.F.17
Cookson, W.O.C.M.18
-
20
-
-
84884592505
-
Review of processing and analysis methods for dna methylation array data
-
Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT, Marsit CJ, Houseman EA, Brown R. Review of processing and analysis methods for dna methylation array data. Br J Cancer. 2013; 109(6):1394-402. doi: 10.1038/bjc.2013.496.
-
(2013)
Br J Cancer
, vol.109
, Issue.6
, pp. 1394-1402
-
-
Wilhelm-Benartzi, C.S.1
Koestler, D.C.2
Karagas, M.R.3
Flanagan, J.M.4
Christensen, B.C.5
Kelsey, K.T.6
Marsit, C.J.7
Houseman, E.A.8
Brown, R.9
-
21
-
-
85013113048
-
Adjusting for cell type composition in dna methylation data using a regression-based approach
-
Jones MJ, Islam SA, Edgar RD, Kobor MS. Adjusting for cell type composition in dna methylation data using a regression-based approach. Methods Mol Biol. 2015. doi: 10.1007/7651_2015_262.
-
(2015)
Methods Mol Biol
-
-
Jones, M.J.1
Islam, S.A.2
Edgar, R.D.3
Kobor, M.S.4
-
22
-
-
84880969686
-
Blood-based profiles of dna methylation predict the underlying distribution of cell types: a validation analysis
-
Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, Wiencke JK, Houseman EA. Blood-based profiles of dna methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics. 2013; 8(8):816-26. doi: 10.4161/epi.25430.
-
(2013)
Epigenetics
, vol.8
, Issue.8
, pp. 816-826
-
-
Koestler, D.C.1
Christensen, B.2
Karagas, M.R.3
Marsit, C.J.4
Langevin, S.M.5
Kelsey, K.T.6
Wiencke, J.K.7
Houseman, E.A.8
-
23
-
-
84897548625
-
Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium dna methylation microarrays
-
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium dna methylation microarrays. Bioinformatics. 2014; 30(10):1363-9. doi: 10.1093/bioinformatics/btu049.
-
(2014)
Bioinformatics
, vol.30
, Issue.10
, pp. 1363-1369
-
-
Aryee, M.J.1
Jaffe, A.E.2
Corrada-Bravo, H.3
Ladd-Acosta, C.4
Feinberg, A.P.5
Hansen, K.D.6
Irizarry, R.A.7
-
24
-
-
0003979924
-
Introduction to the Theory of Computation
-
Addison-Wesley
-
Hertz J, Krogh A, Palmer G. Introduction to the Theory of Computation: Addison-Wesley; 1993.
-
(1993)
-
-
Hertz, J.1
Krogh, A.2
Palmer, G.3
-
25
-
-
0003766014
-
-
(McClatchey KD, editor.). Lippincott Williams & Wilkins.
-
(McClatchey KD, editor.)2002. Clinical Laboratory Medicine. Lippincott Williams & Wilkins.
-
(2002)
Clinical Laboratory Medicine
-
-
-
26
-
-
84921056779
-
Temporal stability and determinants of white blood cell dna methylation in the breakthrough generations study
-
Flanagan JM, Brook MN, Orr N, Tomczyk K, Coulson P, Fletcher O, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow A, Brown R, Garcia-Closas M. Temporal stability and determinants of white blood cell dna methylation in the breakthrough generations study. Cancer Epidemiol Biomarkers Prev. 2015; 24(1):221-9. doi: 10.1158/1055-9965.EPI-14-0767.
-
(2015)
Cancer Epidemiol Biomarkers Prev
, vol.24
, Issue.1
, pp. 221-229
-
-
Flanagan, J.M.1
Brook, M.N.2
Orr, N.3
Tomczyk, K.4
Coulson, P.5
Fletcher, O.6
Jones, M.E.7
Schoemaker, M.J.8
Ashworth, A.9
Swerdlow, A.10
Brown, R.11
Garcia-Closas, M.12
-
27
-
-
84926674860
-
Dna methylation age of blood predicts all-cause mortality in later life
-
Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, Deary IJ. Dna methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015; 16:25. doi: 10.1186/s13059-015-0584-6.
-
(2015)
Genome Biol
, vol.16
, pp. 25
-
-
Marioni, R.E.1
Shah, S.2
McRae, A.F.3
Chen, B.H.4
Colicino, E.5
Harris, S.E.6
Gibson, J.7
Henders, A.K.8
Redmond, P.9
Cox, S.R.10
Pattie, A.11
Corley, J.12
Murphy, L.13
Martin, N.G.14
Montgomery, G.W.15
Feinberg, A.P.16
Fallin, M.D.17
Multhaup, M.L.18
Jaffe, A.E.19
Joehanes, R.20
Schwartz, J.21
Just, A.C.22
Lunetta, K.L.23
Murabito, J.M.24
Starr, J.M.25
Horvath, S.26
Baccarelli, A.A.27
Levy, D.28
Visscher, P.M.29
Wray, N.R.30
Deary, I.J.31
more..
-
28
-
-
85018215032
-
Epigenome-wide association study (ewas) of bmi, bmi change and waist circumference in african american adults identifies multiple replicated loci
-
Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, Hedman K, Sandling JK, Li LA, Irvin MR, Zhi D, Deloukas P, Liang L, Liu C, Bressler J, Spector TD, North K, Li Y, Absher DM, Levy D, Arnett DK, Fornage M, Pankow JS, Boerwinkle E. Epigenome-wide association study (ewas) of bmi, bmi change and waist circumference in african american adults identifies multiple replicated loci. Hum Mol Genet. 2015; 24(15):4464-79. doi: 10.1093/hmg/ddv161.
-
(2015)
Hum Mol Genet
, vol.24
, Issue.15
, pp. 4464-4479
-
-
Demerath, E.W.1
Guan, W.2
Grove, M.L.3
Aslibekyan, S.4
Mendelson, M.5
Zhou, Y.H.6
Hedman, K.7
Sandling, J.K.8
Li, L.A.9
Irvin, M.R.10
Zhi, D.11
Deloukas, P.12
Liang, L.13
Liu, C.14
Bressler, J.15
Spector, T.D.16
North, K.17
Li, Y.18
Absher, D.M.19
Levy, D.20
Arnett, D.K.21
Fornage, M.22
Pankow, J.S.23
Boerwinkle, E.24
more..
-
29
-
-
84872806231
-
Genome-wide methylation profiles reveal quantitative views of human aging rates
-
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013; 49(2):359-67. doi: 10.1016/j.molcel.2012.10.016.
-
(2013)
Mol Cell
, vol.49
, Issue.2
, pp. 359-367
-
-
Hannum, G.1
Guinney, J.2
Zhao, L.3
Zhang, L.4
Hughes, G.5
Sadda, S.6
Klotzle, B.7
Bibikova, M.8
Fan, J.B.9
Gao, Y.10
Deconde, R.11
Chen, M.12
Rajapakse, I.13
Friend, S.14
Ideker, T.15
Zhang, K.16
-
31
-
-
84899115256
-
Quantitative reconstruction of leukocyte subsets using dna methylation
-
Accomando WP, Wiencke JK, Houseman EA, Nelson HH, Kelsey KT. Quantitative reconstruction of leukocyte subsets using dna methylation. Genome Biol. 2014; 15(3):50. doi: 10.1186/gb-2014-15-3-r50.
-
(2014)
Genome Biol
, vol.15
, Issue.3
, pp. 50
-
-
Accomando, W.P.1
Wiencke, J.K.2
Houseman, E.A.3
Nelson, H.H.4
Kelsey, K.T.5
-
32
-
-
84862173149
-
Swan: Subset-quantile within array normalization for illumina infinium humanmethylation450 beadchips
-
Maksimovic J, Gordon L, Oshlack A. Swan: Subset-quantile within array normalization for illumina infinium humanmethylation450 beadchips. Genome Biol. 2012; 13(6):44. doi: 10.1186/gb-2012-13-6-r44.
-
(2012)
Genome Biol
, vol.13
, Issue.6
, pp. 44
-
-
Maksimovic, J.1
Gordon, L.2
Oshlack, A.3
-
33
-
-
84879015632
-
Batch effects and pathway analysis: two potential perils in cancer studies involving dna methylation array analysis
-
Harper KN, Peters BA, Gamble MV. Batch effects and pathway analysis: two potential perils in cancer studies involving dna methylation array analysis. Cancer Epidemiol Biomarkers Prev. 2013; 22(6):1052-60. doi: 10.1158/1055-9965.EPI-13-0114.
-
(2013)
Cancer Epidemiol Biomarkers Prev
, vol.22
, Issue.6
, pp. 1052-1060
-
-
Harper, K.N.1
Peters, B.A.2
Gamble, M.V.3
-
34
-
-
77949533111
-
An epigenetic signature in peripheral blood predicts active ovarian cancer
-
Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S, Jones A, Lechner M, Beck S, Jacobs IJ, Widschwendter M. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE. 2009; 4(12):8274. doi: 10.1371/journal.pone.0008274.
-
(2009)
PLoS ONE
, vol.4
, Issue.12
, pp. 8274
-
-
Teschendorff, A.E.1
Menon, U.2
Gentry-Maharaj, A.3
Ramus, S.J.4
Gayther, S.A.5
Apostolidou, S.6
Jones, A.7
Lechner, M.8
Beck, S.9
Jacobs, I.J.10
Widschwendter, M.11
-
35
-
-
79957851822
-
Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies
-
Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics. 2011; 27(11):1496-505. doi: 10.1093/bioinformatics/btr171.
-
(2011)
Bioinformatics
, vol.27
, Issue.11
, pp. 1496-1505
-
-
Teschendorff, A.E.1
Zhuang, J.2
Widschwendter, M.3
-
36
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical bayes methods
-
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics. 2007; 8(1):118-27. doi: 10.1093/biostatistics/kxj037.
-
(2007)
Biostatistics
, vol.8
, Issue.1
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
37
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012; 28(6):882-3. doi: 10.1093/bioinformatics/bts034.
-
(2012)
Bioinformatics
, vol.28
, Issue.6
, pp. 882-883
-
-
Leek, J.T.1
Johnson, W.E.2
Parker, H.S.3
Jaffe, A.E.4
Storey, J.D.5
-
38
-
-
84871688621
-
Analysing and interpreting dna methylation data
-
Bock C. Analysing and interpreting dna methylation data. Nat Rev Genet. 2012; 13(10):705-19. doi: 10.1038/nrg3273.
-
(2012)
Nat Rev Genet
, vol.13
, Issue.10
, pp. 705-719
-
-
Bock, C.1
-
39
-
-
73849094087
-
Assessing the performance of prediction models: a framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010; 21(1):128-38. doi: 10.1097/EDE.0b013e3181c30fb2.
-
(2010)
Epidemiology
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
Gerds, T.4
Gonen, M.5
Obuchowski, N.6
Pencina, M.J.7
Kattan, M.W.8
|