메뉴 건너뛰기




Volumn 1589, Issue , 2017, Pages 99-106

Adjusting for cell type composition in DNA methylation data using a regression-based approach

Author keywords

Cell type; DNA methylation; Illumina Infinium HumanMethylation450 BeadChip; R statistical software; Statistical adjustment

Indexed keywords

BISULFITE; DNA;

EID: 85013113048     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/7651_2015_262     Document Type: Chapter
Times cited : (42)

References (18)
  • 1
    • 84864359044 scopus 로고    scopus 로고
    • Differential DNA methylation in purified human blood cells: Implications for cell lineage and studies on disease susceptibility
    • Reinius LE, Acevedo N, Joerink M et al (2012) Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 7:e41361
    • (2012) Plos One , vol.7
    • Reinius, L.E.1    Acevedo, N.2    Joerink, M.3
  • 2
    • 84893192328 scopus 로고    scopus 로고
    • Accounting for cellular heterogeneity is critical in epigenomewide association studies
    • Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenomewide association studies. Genome Biol 15:R31
    • (2014) Genome Biol , vol.15 , pp. R31
    • Jaffe, A.E.1    Irizarry, R.A.2
  • 3
    • 84872260642 scopus 로고    scopus 로고
    • Factors underlying variable DNA methylation in a human community cohort
    • Lam LL, Emberly E, Fraser HB et al (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 109(Suppl 2):17253-17260
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 17253-17260
    • Lam, L.L.1    Emberly, E.2    Fraser, H.B.3
  • 4
    • 84873576566 scopus 로고    scopus 로고
    • Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis
    • Liu Y, Aryee MJ, Padyukov L et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142-147
    • (2013) Nat Biotechnol , vol.31 , pp. 142-147
    • Liu, Y.1    Aryee, M.J.2    Padyukov, L.3
  • 5
    • 84899103134 scopus 로고    scopus 로고
    • Correcting for cell-type composition bias in epigenome-wide association studies
    • Lowe R, Rakyan VK (2014) Correcting for cell-type composition bias in epigenome-wide association studies. Genome Med 6:23
    • (2014) Genome Med , vol.6 , pp. 23
    • Lowe, R.1    Rakyan, V.K.2
  • 6
    • 84875700729 scopus 로고    scopus 로고
    • A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression
    • Guintivano J, Aryee MJ, Kaminsky ZA (2013) A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 8:290-302
    • (2013) Epigenetics , vol.8 , pp. 290-302
    • Guintivano, J.1    Aryee, M.J.2    Kaminsky, Z.A.3
  • 7
    • 84891003922 scopus 로고    scopus 로고
    • Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in down syndrome
    • Jones MJ, Farré P, McEwen LM et al (2013) Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in down syndrome. BMC Med Genomics 6:58
    • (2013) BMC Med Genomics , vol.6 , pp. 58
    • Jones, M.J.1    Farré, P.2    McEwen, L.M.3
  • 8
    • 84919416287 scopus 로고    scopus 로고
    • DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain
    • Smith AK, Kilaru V, Klengel T et al (2014) DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am J Med Genet 168:36-44
    • (2014) Am J Med Genet , vol.168 , pp. 36-44
    • Smith, A.K.1    Kilaru, V.2    Klengel, T.3
  • 9
    • 84860637797 scopus 로고    scopus 로고
    • DNA methylation arrays as surrogate measures of cell mixture distribution
    • Houseman EA, Accomando WP, Koestler DC et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86
    • (2012) BMC Bioinform , vol.13 , pp. 86
    • Houseman, E.A.1    Accomando, W.P.2    Koestler, D.C.3
  • 10
    • 84883194790 scopus 로고    scopus 로고
    • Measuring cell-type specific differential methylation in human brain tissue
    • Montaño CM, Irizarry RA, Kaufmann WE et al (2013) Measuring cell-type specific differential methylation in human brain tissue. Genome Biol 14:R94
    • (2013) Genome Biol , vol.14 , pp. R94
    • Montaño, C.M.1    Irizarry, R.A.2    Kaufmann, W.E.3
  • 11
    • 84880969686 scopus 로고    scopus 로고
    • Blood-based profiles of DNA methylation predict the underlying distribution of cell types: A validation analysis
    • Koestler DC, Christensen B, Karagas MR et al (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8:816-826
    • (2013) Epigenetics , vol.8 , pp. 816-826
    • Koestler, D.C.1    Christensen, B.2    Karagas, M.R.3
  • 13
    • 46249088370 scopus 로고    scopus 로고
    • Lumi: A pipe-line for processing Illumina microarray
    • Du P, Kibbe WA, Lin SM (2008) Lumi: a pipe-line for processing Illumina microarray. Bioinformatics 24:1547-1548
    • (2008) Bioin , vol.24 , pp. 1547-1548
    • Du, P.1    Kibbe, W.A.2    Lin, S.M.3
  • 14
    • 84897548625 scopus 로고    scopus 로고
    • Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays
    • Aryee MJ, Jaffe AE, Corrada-Bravo H et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363-1369
    • (2014) Bioinformatics , vol.30 , pp. 1363-1369
    • Aryee, M.J.1    Jaffe, A.E.2    Corrada-Bravo, H.3
  • 15
    • 78649475003 scopus 로고    scopus 로고
    • Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis
    • Du P, Zhang X, Huang C-C et al (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform 11:587
    • (2010) BMC Bioinform , vol.11 , pp. 587
    • Du, P.1    Zhang, X.2    Huang, C.-C.3
  • 16
    • 84895540377 scopus 로고    scopus 로고
    • Epigenome-wide association studies without the need for cell-type composition
    • Zou J, Lippert C, Heckerman D et al (2014) Epigenome-wide association studies without the need for cell-type composition. Nat Methods 11:309-311
    • (2014) Nat Methods , vol.11 , pp. 309-311
    • Zou, J.1    Lippert, C.2    Heckerman, D.3
  • 17
    • 84900824657 scopus 로고    scopus 로고
    • Reference-free cell mixture adjustments in analysis of DNA methylation data
    • Houseman EA, Molitor J, Marsit CJ (2014) Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30:1431-1439
    • (2014) Bioinformatics , vol.30 , pp. 1431-1439
    • Houseman, E.A.1    Molitor, J.2    Marsit, C.J.3
  • 18
    • 84859098571 scopus 로고    scopus 로고
    • The sva package for removing batch effects and other unwanted variation in high-throughput experiments
    • Leek JT, Johnson WE, Parker HS et al (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882-883
    • (2012) Bioinformatics , vol.28 , pp. 882-883
    • Leek, J.T.1    Johnson, W.E.2    Parker, H.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.