-
1
-
-
33748520872
-
Review: a gentle introduction to imputation of missing values
-
Donders A.R.T., van der Heijden G., Stijnen T., Moons K.G. Review: a gentle introduction to imputation of missing values. J. Clin. Epidemiol. 2006, 59(10):1087-1091.
-
(2006)
J. Clin. Epidemiol.
, vol.59
, Issue.10
, pp. 1087-1091
-
-
Donders, A.R.T.1
van der Heijden, G.2
Stijnen, T.3
Moons, K.G.4
-
2
-
-
71549166314
-
An introduction to modern missing data analyses
-
Baraldi A.N., Enders C.K. An introduction to modern missing data analyses. J. School Psychol. 2010, 48(1):5-37.
-
(2010)
J. School Psychol.
, vol.48
, Issue.1
, pp. 5-37
-
-
Baraldi, A.N.1
Enders, C.K.2
-
3
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the em algorithm. J. R. Statist. Soc. 1977, 39:1-38.
-
(1977)
J. R. Statist. Soc.
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
5
-
-
0034831061
-
Changes in colour and phenolic composition during the early stages of maturation of port in wood stainless steel and glass
-
Ho P., Silva M.C.M., Hogg T.A. Changes in colour and phenolic composition during the early stages of maturation of port in wood stainless steel and glass. J. Sci. Food Agricult. 2001, 81(13):1269-1280.
-
(2001)
J. Sci. Food Agricult.
, vol.81
, Issue.13
, pp. 1269-1280
-
-
Ho, P.1
Silva, M.C.M.2
Hogg, T.A.3
-
6
-
-
0036143380
-
Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses
-
Faris P.D., Ghali W.A., Brant R., Norris C.M., Galbraith P.D., Knudtson M.L. Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. J. Clin. Epidemiol. 2002, 55(2):184-191.
-
(2002)
J. Clin. Epidemiol.
, vol.55
, Issue.2
, pp. 184-191
-
-
Faris, P.D.1
Ghali, W.A.2
Brant, R.3
Norris, C.M.4
Galbraith, P.D.5
Knudtson, M.L.6
-
7
-
-
0346040111
-
Gap-filling missing data in eddy covariance measurements using multiple imputation (mi) for annual estimations
-
Hui D., Wan S., Su B., Katul G., Monson Y.L.R. Gap-filling missing data in eddy covariance measurements using multiple imputation (mi) for annual estimations. Agricult. Forest Meteorol. 2004, 121(2):93-111.
-
(2004)
Agricult. Forest Meteorol.
, vol.121
, Issue.2
, pp. 93-111
-
-
Hui, D.1
Wan, S.2
Su, B.3
Katul, G.4
Monson, Y.L.R.5
-
8
-
-
18744367219
-
Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose
-
Sartori N., Salvan A., Thomaseth K. Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose. Computat. Statist. Data Anal. 2005, 49(3):937-953.
-
(2005)
Computat. Statist. Data Anal.
, vol.49
, Issue.3
, pp. 937-953
-
-
Sartori, N.1
Salvan, A.2
Thomaseth, K.3
-
9
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1).
-
(2006)
Neurocomputing
, vol.70
, Issue.1
-
-
Huang, G.B.1
Zhu, Q.2
Siew, C.K.3
-
10
-
-
84859007933
-
-
Extreme learning machine for regression and multi-class classification, IEEE Transactions on Systems, Man, and Cybernetics: Part B: Cybernetics
-
G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multi-class classification, IEEE Transactions on Systems, Man, and Cybernetics: Part B: Cybernetics 42 (2) (2012) 513-529.
-
(2012)
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
12
-
-
56549090053
-
Enhanced random search based incremental extreme learning machine
-
Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3460-3468.
-
(2008)
Neurocomputing
, vol.71
, pp. 3460-3468
-
-
Huang, G.B.1
Chen, L.2
-
13
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.B.1
Chen, L.2
Siew, C.K.3
-
14
-
-
84870251585
-
-
Extreme learning machine: theory and applications, in: 2004 International Joint conference on Neural Networks
-
G. B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, in: 2004 International Joint conference on Neural Networks (2004).
-
(2004)
-
-
Huang, G.B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
15
-
-
73949154686
-
Op-elm: optimally-pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. Op-elm: optimally-pruned extreme learning machine. IEEE Trans. Neural Networks 2010, 21:158-162.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
16
-
-
80051671932
-
Trop-elm: a double-regularized elm using Lars and Tikhonov regularization
-
Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. Trop-elm: a double-regularized elm using Lars and Tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2413-2421
-
-
Miche, Y.1
van Heeswijk, M.2
Bas, P.3
Simula, O.4
Lendasse, A.5
-
17
-
-
0003496949
-
-
Wiley, NJ, USA
-
Little R.J.A., Rubin D.B. Statistical Analysis with Missing Data 2002, Wiley, NJ, USA, pp. 138-149. second ed.
-
(2002)
Statistical Analysis with Missing Data
, pp. 138-149
-
-
Little, R.J.A.1
Rubin, D.B.2
-
18
-
-
0030343462
-
Distinguishing missing at random and missing completely at random
-
Heitjan D.F., Basu S. Distinguishing missing at random and missing completely at random. Am. Statist. 1996, 50(3):207-213.
-
(1996)
Am. Statist.
, vol.50
, Issue.3
, pp. 207-213
-
-
Heitjan, D.F.1
Basu, S.2
-
19
-
-
24344443708
-
Missing at random likelihood ignorability and model completeness
-
Lu G., Copas J. Missing at random likelihood ignorability and model completeness. Ann. Statist. 2004, 32(2):754-765.
-
(2004)
Ann. Statist.
, vol.32
, Issue.2
, pp. 754-765
-
-
Lu, G.1
Copas, J.2
-
20
-
-
84870247470
-
-
An overview of hot-deck procedures, in: Incomplete Data in Sample Surveys, Academic Press, New York, USA
-
B.L. Ford, An overview of hot-deck procedures, in: Incomplete Data in Sample Surveys, Academic Press, New York, USA, 1983, pp. 185-207.
-
(1983)
, pp. 185-207
-
-
Ford, B.L.1
-
22
-
-
0032960273
-
-
Multiple imputation: a primer, Statistical Methods in Medical Research 8 (1)
-
J.L. Schafer, Multiple imputation: a primer, Statistical Methods in Medical Research 8 (1) (1999) 3-15.
-
(1999)
, pp. 3-15
-
-
Schafer, J.L.1
-
23
-
-
27744495913
-
Multiple imputation: how it began and continues
-
Scheuren F. Multiple imputation: how it began and continues. Am. Statist. 2005, 59:315-319.
-
(2005)
Am. Statist.
, vol.59
, pp. 315-319
-
-
Scheuren, F.1
-
24
-
-
0000251971
-
Maximum likelihood estimation via the ecm algorithm: a general framework
-
Meng X., Rubin D.B. Maximum likelihood estimation via the ecm algorithm: a general framework. Biometrika 1993, 80(2):267-278.
-
(1993)
Biometrika
, vol.80
, Issue.2
, pp. 267-278
-
-
Meng, X.1
Rubin, D.B.2
-
25
-
-
84870247471
-
-
Estimating Expected Pairwise Distances in a Data Set with Missing Values, Technical Report,
-
E. Eirola, Y. Miche, A. Lendasse, Estimating Expected Pairwise Distances in a Data Set with Missing Values, Technical Report, 2011.
-
(2011)
-
-
Eirola, E.1
Miche, Y.2
Lendasse, A.3
-
26
-
-
84871489180
-
-
MathWorks, Matlab Financial Toolbox: ecmnmle, URL 〈〉
-
MathWorks, Matlab Financial Toolbox: ecmnmle, URL 〈〉, 2010. http://www.mathworks.com/help/toolbox/finance/ecmnmle.html.
-
(2010)
-
-
-
27
-
-
33746386802
-
Ecm algorithms that converge at the rate of em
-
Sexton J., Swensen A.R. Ecm algorithms that converge at the rate of em. Biometrika 2011, 87(3):651-662.
-
(2011)
Biometrika
, vol.87
, Issue.3
, pp. 651-662
-
-
Sexton, J.1
Swensen, A.R.2
-
29
-
-
78650310346
-
Constructive hidden nodes selection of extreme learning machine for regression
-
Lan Y., Soh Y., Huang G.B. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 2010, 73(16).
-
(2010)
Neurocomputing
, vol.73
, Issue.16
-
-
Lan, Y.1
Soh, Y.2
Huang, G.B.3
-
30
-
-
68949200808
-
Error minimized extreme learning machine with growth of hidden nodes and incremental learning
-
Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 2009, 20(8):1352-1357.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, Issue.8
, pp. 1352-1357
-
-
Feng, G.1
Huang, G.B.2
Lin, Q.3
Gay, R.4
-
31
-
-
79958181023
-
Random search enhancement of error minimized extreme learning machine
-
in: European Symposium on Artificial Neural Networks (ESANN) 2010, Bruges, Belgium
-
L. Yuan, S.Y.Chai, G. B. Huang, Random search enhancement of error minimized extreme learning machine, in: European Symposium on Artificial Neural Networks (ESANN) 2010, Bruges, Belgium, 2010, pp. 327-332.
-
(2010)
, pp. 327-332
-
-
Yuan, L.1
Chai, S.Y.2
Huang, G.B.3
-
32
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J. R. Statist. Soc. 1996, 58(1):267-288.
-
(1996)
J. R. Statist. Soc.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
33
-
-
3242708140
-
Least angle regression
-
Efron B., Hastie T., Johnstone I., Tibshirani R. Least angle regression. Ann. Statist. 2004, 32(2):407-499.
-
(2004)
Ann. Statist.
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
34
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
35
-
-
84901251330
-
-
Recursive lazy learning for modeling and control, in: Proceedings of the European Conference on Machine Learning
-
G. Bontempi, M. Birattari, H. Bersini, Recursive lazy learning for modeling and control, in: Proceedings of the European Conference on Machine Learning, 1998, pp. 292-303.
-
(1998)
, pp. 292-303
-
-
Bontempi, G.1
Birattari, M.2
Bersini, H.3
-
36
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21(2):215-223.
-
(1979)
Technometrics
, vol.21
, Issue.2
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
37
-
-
0000238336
-
A simplex method for function minimization
-
Nelder J.A., Mead R. A simplex method for function minimization. Comput. J. 1965, 7:308-313.
-
(1965)
Comput. J.
, vol.7
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
38
-
-
84871499534
-
-
URL 〈〉.
-
URL 〈〉. http://archive.ics.uci.edu/ml/datasets.html.
-
-
-
-
39
-
-
0036136472
-
Nonparametric permutation tests for functional neuroimaging: a primer with examples
-
Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Map. 2001, 15(1):1-25.
-
(2001)
Human Brain Map.
, vol.15
, Issue.1
, pp. 1-25
-
-
Nichols, T.E.1
Holmes, A.P.2
-
40
-
-
0041611508
-
Nearest neighbor imputation for survey data
-
Chen J., Shao J. Nearest neighbor imputation for survey data. J. Official Statist. 2000, 16(2):113-131.
-
(2000)
J. Official Statist.
, vol.16
, Issue.2
, pp. 113-131
-
-
Chen, J.1
Shao, J.2
-
41
-
-
84871504005
-
-
Incomplete-case nearest neighbor imputation in software measurement data, Inf. Sci., in press.
-
J.V. Hulse, T.M. Khoshgoftaar, Incomplete-case nearest neighbor imputation in software measurement data, Inf. Sci., in press.
-
-
-
Hulse, J.V.1
Khoshgoftaar, T.M.2
|