메뉴 건너뛰기




Volumn 102, Issue , 2013, Pages 45-51

Regularized extreme learning machine for regression with missing data

Author keywords

ELM; LARS; Missing data; Pairwise distance estimation; Ridge regression; Tikhonov regularization

Indexed keywords

ELM; LARS; MISSING DATA; PAIRWISE DISTANCES; RIDGE REGRESSION; TIKHONOV REGULARIZATION;

EID: 84870244730     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.02.040     Document Type: Article
Times cited : (118)

References (41)
  • 2
    • 71549166314 scopus 로고    scopus 로고
    • An introduction to modern missing data analyses
    • Baraldi A.N., Enders C.K. An introduction to modern missing data analyses. J. School Psychol. 2010, 48(1):5-37.
    • (2010) J. School Psychol. , vol.48 , Issue.1 , pp. 5-37
    • Baraldi, A.N.1    Enders, C.K.2
  • 3
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the em algorithm. J. R. Statist. Soc. 1977, 39:1-38.
    • (1977) J. R. Statist. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 5
    • 0034831061 scopus 로고    scopus 로고
    • Changes in colour and phenolic composition during the early stages of maturation of port in wood stainless steel and glass
    • Ho P., Silva M.C.M., Hogg T.A. Changes in colour and phenolic composition during the early stages of maturation of port in wood stainless steel and glass. J. Sci. Food Agricult. 2001, 81(13):1269-1280.
    • (2001) J. Sci. Food Agricult. , vol.81 , Issue.13 , pp. 1269-1280
    • Ho, P.1    Silva, M.C.M.2    Hogg, T.A.3
  • 6
    • 0036143380 scopus 로고    scopus 로고
    • Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses
    • Faris P.D., Ghali W.A., Brant R., Norris C.M., Galbraith P.D., Knudtson M.L. Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. J. Clin. Epidemiol. 2002, 55(2):184-191.
    • (2002) J. Clin. Epidemiol. , vol.55 , Issue.2 , pp. 184-191
    • Faris, P.D.1    Ghali, W.A.2    Brant, R.3    Norris, C.M.4    Galbraith, P.D.5    Knudtson, M.L.6
  • 7
    • 0346040111 scopus 로고    scopus 로고
    • Gap-filling missing data in eddy covariance measurements using multiple imputation (mi) for annual estimations
    • Hui D., Wan S., Su B., Katul G., Monson Y.L.R. Gap-filling missing data in eddy covariance measurements using multiple imputation (mi) for annual estimations. Agricult. Forest Meteorol. 2004, 121(2):93-111.
    • (2004) Agricult. Forest Meteorol. , vol.121 , Issue.2 , pp. 93-111
    • Hui, D.1    Wan, S.2    Su, B.3    Katul, G.4    Monson, Y.L.R.5
  • 8
    • 18744367219 scopus 로고    scopus 로고
    • Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose
    • Sartori N., Salvan A., Thomaseth K. Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose. Computat. Statist. Data Anal. 2005, 49(3):937-953.
    • (2005) Computat. Statist. Data Anal. , vol.49 , Issue.3 , pp. 937-953
    • Sartori, N.1    Salvan, A.2    Thomaseth, K.3
  • 9
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1).
    • (2006) Neurocomputing , vol.70 , Issue.1
    • Huang, G.B.1    Zhu, Q.2    Siew, C.K.3
  • 10
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multi-class classification, IEEE Transactions on Systems, Man, and Cybernetics: Part B: Cybernetics
    • G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multi-class classification, IEEE Transactions on Systems, Man, and Cybernetics: Part B: Cybernetics 42 (2) (2012) 513-529.
    • (2012) , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 12
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 14
    • 84870251585 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications, in: 2004 International Joint conference on Neural Networks
    • G. B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, in: 2004 International Joint conference on Neural Networks (2004).
    • (2004)
    • Huang, G.B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 16
    • 80051671932 scopus 로고    scopus 로고
    • Trop-elm: a double-regularized elm using Lars and Tikhonov regularization
    • Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. Trop-elm: a double-regularized elm using Lars and Tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2413-2421
    • Miche, Y.1    van Heeswijk, M.2    Bas, P.3    Simula, O.4    Lendasse, A.5
  • 18
    • 0030343462 scopus 로고    scopus 로고
    • Distinguishing missing at random and missing completely at random
    • Heitjan D.F., Basu S. Distinguishing missing at random and missing completely at random. Am. Statist. 1996, 50(3):207-213.
    • (1996) Am. Statist. , vol.50 , Issue.3 , pp. 207-213
    • Heitjan, D.F.1    Basu, S.2
  • 19
    • 24344443708 scopus 로고    scopus 로고
    • Missing at random likelihood ignorability and model completeness
    • Lu G., Copas J. Missing at random likelihood ignorability and model completeness. Ann. Statist. 2004, 32(2):754-765.
    • (2004) Ann. Statist. , vol.32 , Issue.2 , pp. 754-765
    • Lu, G.1    Copas, J.2
  • 20
    • 84870247470 scopus 로고
    • An overview of hot-deck procedures, in: Incomplete Data in Sample Surveys, Academic Press, New York, USA
    • B.L. Ford, An overview of hot-deck procedures, in: Incomplete Data in Sample Surveys, Academic Press, New York, USA, 1983, pp. 185-207.
    • (1983) , pp. 185-207
    • Ford, B.L.1
  • 22
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: a primer, Statistical Methods in Medical Research 8 (1)
    • J.L. Schafer, Multiple imputation: a primer, Statistical Methods in Medical Research 8 (1) (1999) 3-15.
    • (1999) , pp. 3-15
    • Schafer, J.L.1
  • 23
    • 27744495913 scopus 로고    scopus 로고
    • Multiple imputation: how it began and continues
    • Scheuren F. Multiple imputation: how it began and continues. Am. Statist. 2005, 59:315-319.
    • (2005) Am. Statist. , vol.59 , pp. 315-319
    • Scheuren, F.1
  • 24
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ecm algorithm: a general framework
    • Meng X., Rubin D.B. Maximum likelihood estimation via the ecm algorithm: a general framework. Biometrika 1993, 80(2):267-278.
    • (1993) Biometrika , vol.80 , Issue.2 , pp. 267-278
    • Meng, X.1    Rubin, D.B.2
  • 25
    • 84870247471 scopus 로고    scopus 로고
    • Estimating Expected Pairwise Distances in a Data Set with Missing Values, Technical Report,
    • E. Eirola, Y. Miche, A. Lendasse, Estimating Expected Pairwise Distances in a Data Set with Missing Values, Technical Report, 2011.
    • (2011)
    • Eirola, E.1    Miche, Y.2    Lendasse, A.3
  • 26
    • 84871489180 scopus 로고    scopus 로고
    • MathWorks, Matlab Financial Toolbox: ecmnmle, URL 〈〉
    • MathWorks, Matlab Financial Toolbox: ecmnmle, URL 〈〉, 2010. http://www.mathworks.com/help/toolbox/finance/ecmnmle.html.
    • (2010)
  • 27
    • 33746386802 scopus 로고    scopus 로고
    • Ecm algorithms that converge at the rate of em
    • Sexton J., Swensen A.R. Ecm algorithms that converge at the rate of em. Biometrika 2011, 87(3):651-662.
    • (2011) Biometrika , vol.87 , Issue.3 , pp. 651-662
    • Sexton, J.1    Swensen, A.R.2
  • 29
    • 78650310346 scopus 로고    scopus 로고
    • Constructive hidden nodes selection of extreme learning machine for regression
    • Lan Y., Soh Y., Huang G.B. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 2010, 73(16).
    • (2010) Neurocomputing , vol.73 , Issue.16
    • Lan, Y.1    Soh, Y.2    Huang, G.B.3
  • 30
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 2009, 20(8):1352-1357.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.B.2    Lin, Q.3    Gay, R.4
  • 31
    • 79958181023 scopus 로고    scopus 로고
    • Random search enhancement of error minimized extreme learning machine
    • in: European Symposium on Artificial Neural Networks (ESANN) 2010, Bruges, Belgium
    • L. Yuan, S.Y.Chai, G. B. Huang, Random search enhancement of error minimized extreme learning machine, in: European Symposium on Artificial Neural Networks (ESANN) 2010, Bruges, Belgium, 2010, pp. 327-332.
    • (2010) , pp. 327-332
    • Yuan, L.1    Chai, S.Y.2    Huang, G.B.3
  • 32
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J. R. Statist. Soc. 1996, 58(1):267-288.
    • (1996) J. R. Statist. Soc. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 35
    • 84901251330 scopus 로고    scopus 로고
    • Recursive lazy learning for modeling and control, in: Proceedings of the European Conference on Machine Learning
    • G. Bontempi, M. Birattari, H. Bersini, Recursive lazy learning for modeling and control, in: Proceedings of the European Conference on Machine Learning, 1998, pp. 292-303.
    • (1998) , pp. 292-303
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 36
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21(2):215-223.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 37
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder J.A., Mead R. A simplex method for function minimization. Comput. J. 1965, 7:308-313.
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 38
    • 84871499534 scopus 로고    scopus 로고
    • URL 〈〉.
    • URL 〈〉. http://archive.ics.uci.edu/ml/datasets.html.
  • 39
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Map. 2001, 15(1):1-25.
    • (2001) Human Brain Map. , vol.15 , Issue.1 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 40
    • 0041611508 scopus 로고    scopus 로고
    • Nearest neighbor imputation for survey data
    • Chen J., Shao J. Nearest neighbor imputation for survey data. J. Official Statist. 2000, 16(2):113-131.
    • (2000) J. Official Statist. , vol.16 , Issue.2 , pp. 113-131
    • Chen, J.1    Shao, J.2
  • 41
    • 84871504005 scopus 로고    scopus 로고
    • Incomplete-case nearest neighbor imputation in software measurement data, Inf. Sci., in press.
    • J.V. Hulse, T.M. Khoshgoftaar, Incomplete-case nearest neighbor imputation in software measurement data, Inf. Sci., in press.
    • Hulse, J.V.1    Khoshgoftaar, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.