메뉴 건너뛰기




Volumn 9, Issue , 2016, Pages 1047-1055

Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer

Author keywords

Antiangiogenic therapy; Macrophage polarization; Myeloid derived suppressor cells; Radiation; Therapies; Tumor microenvironment; Tumor associated macrophage

Indexed keywords

BEVACIZUMAB; CD11B ANTIGEN; CD33 ANTIGEN; COLONY STIMULATING FACTOR RECEPTOR; CYCLOPHOSPHAMIDE; DOXORUBICIN; ETOPOSIDE; FLUOROURACIL; GEMCITABINE; GW 2580; HLA DR ANTIGEN; IMATINIB; PACLITAXEL; PLX 3397; PROTEIN NODAL; RECOMBINANT COLONY STIMULATING FACTOR 1; SUNITINIB; UNCLASSIFIED DRUG; VASCULOTROPIN; VASCULOTROPIN RECEPTOR; VATALANIB;

EID: 84959498999     PISSN: None     EISSN: 11786930     Source Type: Journal    
DOI: 10.2147/OTT.S102907     Document Type: Review
Times cited : (33)

References (92)
  • 1
    • 84916889812 scopus 로고    scopus 로고
    • Microenvironment, tumor cell plasticity, and cancer
    • Faurobert E, Bouin AP, Albiges-Rizo C. Microenvironment, tumor cell plasticity, and cancer. Curr Opin Oncol. 2015;27(1):64–70.
    • (2015) Curr Opin Oncol , vol.27 , Issue.1 , pp. 64-70
    • Faurobert, E.1    Bouin, A.P.2    Albiges-Rizo, C.3
  • 2
    • 84929483921 scopus 로고    scopus 로고
    • Molecular pathways: Linking tumor microenvironment to epithelial-mesenchymal transition in metastasis
    • Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015;21(5):962–968.
    • (2015) Clin Cancer Res , vol.21 , Issue.5 , pp. 962-968
    • Jung, H.Y.1    Fattet, L.2    Yang, J.3
  • 4
    • 84892497106 scopus 로고    scopus 로고
    • Role of inflammation-associated microenvironment in tumorigenesis and metastasis
    • Gao F, Liang B, Reddy ST, Farias-Eisner R, Su X. Role of inflammation-associated microenvironment in tumorigenesis and metastasis. Curr Cancer Drug Targets. 2014;14(1):30–45.
    • (2014) Curr Cancer Drug Targets , vol.14 , Issue.1 , pp. 30-45
    • Gao, F.1    Liang, B.2    Reddy, S.T.3    Farias-Eisner, R.4    Su, X.5
  • 5
    • 53549102755 scopus 로고    scopus 로고
    • The tumor microenvironment and its role in promoting tumor growth
    • Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–5912.
    • (2008) Oncogene , vol.27 , Issue.45 , pp. 5904-5912
    • Whiteside, T.L.1
  • 6
    • 79960122931 scopus 로고    scopus 로고
    • Dual roles of immune cells and their factors in cancer development and progression
    • Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7(5):651–658.
    • (2011) Int J Biol Sci , vol.7 , Issue.5 , pp. 651-658
    • Zamarron, B.F.1    Chen, W.2
  • 7
    • 79952392467 scopus 로고    scopus 로고
    • Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression
    • Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–329.
    • (2011) Nat Med , vol.17 , Issue.3 , pp. 320-329
    • Bissell, M.J.1    Hines, W.C.2
  • 8
    • 84955198521 scopus 로고    scopus 로고
    • The multifaceted roles neutrophils play in the tumor microenvironment
    • Sionov RV, Fridlender ZG, Granot Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015;8(3):125–158.
    • (2015) Cancer Microenviron , vol.8 , Issue.3 , pp. 125-158
    • Sionov, R.V.1    Fridlender, Z.G.2    Granot, Z.3
  • 9
    • 84921599180 scopus 로고    scopus 로고
    • Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment
    • Mou W, Xu Y, Ye Y, et al. Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment. Cancer Lett. 2015;358(2):115–123.
    • (2015) Cancer Lett , vol.358 , Issue.2 , pp. 115-123
    • Mou, W.1    Xu, Y.2    Ye, Y.3
  • 10
    • 40049088602 scopus 로고    scopus 로고
    • The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages
    • Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1–9.
    • (2008) Crit Rev Oncol Hematol , vol.66 , Issue.1 , pp. 1-9
    • Allavena, P.1    Sica, A.2    Solinas, G.3    Porta, C.4    Mantovani, A.5
  • 11
    • 31044433663 scopus 로고    scopus 로고
    • Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis
    • Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–266.
    • (2006) Cell , vol.124 , Issue.2 , pp. 263-266
    • Condeelis, J.1    Pollard, J.W.2
  • 13
    • 84876998346 scopus 로고    scopus 로고
    • Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment
    • Dijkgraaf EM, Heusinkveld M, Tummers B, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013;73(8):2480–2492.
    • (2013) Cancer Res , vol.73 , Issue.8 , pp. 2480-2492
    • Dijkgraaf, E.M.1    Heusinkveld, M.2    Tummers, B.3
  • 14
    • 84906280651 scopus 로고    scopus 로고
    • Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin
    • Tripathi C, Tewari BN, Kanchan RK, et al. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget. 2014;5(14):5350–5368.
    • (2014) Oncotarget , vol.5 , Issue.14 , pp. 5350-5368
    • Tripathi, C.1    Tewari, B.N.2    Kanchan, R.K.3
  • 15
    • 2142662869 scopus 로고    scopus 로고
    • Infiltration of tumours by macrophages and dendritic cells: Tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • discussion 146–148, 259–269
    • Mantovani A, Sozzani S, Locati M, et al. Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp. 2004;256:137–145; discussion 146–148, 259–269.
    • (2004) Novartis Found Symp , vol.256 , pp. 137-145
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3
  • 16
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: In vivo veritas
    • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–795.
    • (2012) J Clin Invest , vol.122 , Issue.3 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 17
    • 84879733796 scopus 로고    scopus 로고
    • Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response
    • Tseng D, Volkmer JP, Willingham SB, et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A. 2013;110(27):11103–11108.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.27 , pp. 11103-11108
    • Tseng, D.1    Volkmer, J.P.2    Willingham, S.B.3
  • 18
    • 47749155653 scopus 로고    scopus 로고
    • Cancer related inflammation: The macrophage connection
    • Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008;267(2):204–215.
    • (2008) Cancer Lett , vol.267 , Issue.2 , pp. 204-215
    • Sica, A.1    Allavena, P.2    Mantovani, A.3
  • 20
    • 51349098155 scopus 로고    scopus 로고
    • Cytokines as a key component of cancer-related inflammation
    • Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008;43(3):374–379.
    • (2008) Cytokine , vol.43 , Issue.3 , pp. 374-379
    • Germano, G.1    Allavena, P.2    Mantovani, A.3
  • 21
    • 84881416837 scopus 로고    scopus 로고
    • Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells
    • Pommier A, Audemard A, Durand A, et al. Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proc Natl Acad Sci U S A. 2013;110(32):13085–13090.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.32 , pp. 13085-13090
    • Pommier, A.1    Audemard, A.2    Durand, A.3
  • 22
    • 33745840137 scopus 로고    scopus 로고
    • The IL-21 receptor augments Th2 effector function and alternative macrophage activation
    • Pesce J, Kaviratne M, Ramalingam TR, et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest. 2006;116(7):2044–2055.
    • (2006) J Clin Invest , vol.116 , Issue.7 , pp. 2044-2055
    • Pesce, J.1    Kaviratne, M.2    Ramalingam, T.R.3
  • 23
    • 75549085516 scopus 로고    scopus 로고
    • IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation
    • Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 2009;183(10):6469–6477.
    • (2009) J Immunol , vol.183 , Issue.10 , pp. 6469-6477
    • Kurowska-Stolarska, M.1    Stolarski, B.2    Kewin, P.3
  • 24
    • 77956976681 scopus 로고    scopus 로고
    • Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm
    • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–896.
    • (2010) Nat Immunol , vol.11 , Issue.10 , pp. 889-896
    • Biswas, S.K.1    Mantovani, A.2
  • 25
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–555.
    • (2002) Trends Immunol , vol.23 , Issue.11 , pp. 549-555
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3    Allavena, P.4    Sica, A.5
  • 26
    • 33344460032 scopus 로고    scopus 로고
    • A distinct and unique transcriptional program expressed by tumor-associated macrophages (Defective NF-kappaB and enhanced IRF-3/STAT1 activation)
    • Biswas SK, Gangi L, Paul S, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–2122.
    • (2006) Blood , vol.107 , Issue.5 , pp. 2112-2122
    • Biswas, S.K.1    Gangi, L.2    Paul, S.3
  • 27
    • 84890523431 scopus 로고    scopus 로고
    • Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages
    • Katara GK, Jaiswal MK, Kulshrestha A, Kolli B, Gilman-Sachs A, Beaman KD. Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene. 2014;33(49):5649–5654.
    • (2014) Oncogene , vol.33 , Issue.49 , pp. 5649-5654
    • Katara, G.K.1    Jaiswal, M.K.2    Kulshrestha, A.3    Kolli, B.4    Gilman-Sachs, A.5    Beaman, K.D.6
  • 28
    • 84892466847 scopus 로고    scopus 로고
    • Nodal promotes the generation of M2-like macrophages and downregulates the expression of IL-12
    • Wang XF, Wang HS, Zhang F, et al. Nodal promotes the generation of M2-like macrophages and downregulates the expression of IL-12. Eur J Immunol. 2014;44(1):173–183.
    • (2014) Eur J Immunol , vol.44 , Issue.1 , pp. 173-183
    • Wang, X.F.1    Wang, H.S.2    Zhang, F.3
  • 29
    • 84964314847 scopus 로고    scopus 로고
    • The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells
    • Elpek KG, Cremasco V, Shen H, et al. The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells. Cancer Immunol Res. 2014;2(7):655–667.
    • (2014) Cancer Immunol Res , vol.2 , Issue.7 , pp. 655-667
    • Elpek, K.G.1    Cremasco, V.2    Shen, H.3
  • 30
    • 4944244259 scopus 로고    scopus 로고
    • Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues
    • Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104(8):2224–2234.
    • (2004) Blood , vol.104 , Issue.8 , pp. 2224-2234
    • Murdoch, C.1    Giannoudis, A.2    Lewis, C.E.3
  • 31
    • 33746926292 scopus 로고    scopus 로고
    • Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach
    • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer. 2006;95(3):272–281.
    • (2006) Br J Cancer , vol.95 , Issue.3 , pp. 272-281
    • Zeisberger, S.M.1    Odermatt, B.2    Marty, C.3    Zehnder-Fjallman, A.H.4    Ballmer-Hofer, K.5    Schwendener, R.A.6
  • 32
    • 84891930215 scopus 로고    scopus 로고
    • Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity
    • Casazza A, Laoui D, Wenes M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 2013;24(6):695–709.
    • (2013) Cancer Cell , vol.24 , Issue.6 , pp. 695-709
    • Casazza, A.1    Laoui, D.2    Wenes, M.3
  • 33
    • 84892747845 scopus 로고    scopus 로고
    • Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population
    • Laoui D, Van Overmeire E, Di Conza G, et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res. 2014;74(1):24–30.
    • (2014) Cancer Res , vol.74 , Issue.1 , pp. 24-30
    • Laoui, D.1    Van Overmeire, E.2    Di Conza, G.3
  • 34
    • 77955384579 scopus 로고    scopus 로고
    • Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung
    • Yan HH, Pickup M, Pang Y, et al. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 2010;70(15):6139–6149.
    • (2010) Cancer Res , vol.70 , Issue.15 , pp. 6139-6149
    • Yan, H.H.1    Pickup, M.2    Pang, Y.3
  • 35
    • 84945311509 scopus 로고    scopus 로고
    • Myeloid derived suppressor cells: Fuel the fire
    • Achyut BR, Arbab AS. Myeloid derived suppressor cells: fuel the fire. Biochem Physiol. 2014;3:e123.
    • (2014) Biochem Physiol , vol.3
    • Achyut, B.R.1    Arbab, A.S.2
  • 37
    • 84955450515 scopus 로고    scopus 로고
    • CCL9 induced by TGF-beta signaling in myeloid cells enhances tumor cell survival in the premetastatic organ
    • Yan HH, Jiang J, Pang Y, et al. CCL9 induced by TGF-beta signaling in myeloid cells enhances tumor cell survival in the premetastatic organ. Cancer Res. 2015;75:5283–5298.
    • (2015) Cancer Res , vol.75 , pp. 5283-5298
    • Yan, H.H.1    Jiang, J.2    Pang, Y.3
  • 38
    • 5444225991 scopus 로고    scopus 로고
    • Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis
    • Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–421.
    • (2004) Cancer Cell , vol.6 , Issue.4 , pp. 409-421
    • Yang, L.1    Debusk, L.M.2    Fukuda, K.3
  • 39
    • 37049006066 scopus 로고    scopus 로고
    • Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma
    • Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67(23):11438–11446.
    • (2007) Cancer Res , vol.67 , Issue.23 , pp. 11438-11446
    • Melani, C.1    Sangaletti, S.2    Barazzetta, F.M.3    Werb, Z.4    Colombo, M.P.5
  • 40
    • 46049098560 scopus 로고    scopus 로고
    • A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells
    • Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135(1):234–243.
    • (2008) Gastroenterology , vol.135 , Issue.1 , pp. 234-243
    • Hoechst, B.1    Ormandy, L.A.2    Ballmaier, M.3
  • 41
    • 54849440346 scopus 로고    scopus 로고
    • Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy
    • Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59.
    • (2009) Cancer Immunol Immunother , vol.58 , Issue.1 , pp. 49-59
    • Diaz-Montero, C.M.1    Salem, M.L.2    Nishimura, M.I.3    Garrett-Mayer, E.4    Cole, D.J.5    Montero, A.J.6
  • 43
    • 66949145484 scopus 로고    scopus 로고
    • Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells
    • Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182(9):5693–5701.
    • (2009) J Immunol , vol.182 , Issue.9 , pp. 5693-5701
    • Corzo, C.A.1    Cotter, M.J.2    Cheng, P.3
  • 44
    • 61349100687 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells as regulators of the immune system
    • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–174.
    • (2009) Nat Rev Immunol , vol.9 , Issue.3 , pp. 162-174
    • Gabrilovich, D.I.1    Nagaraj, S.2
  • 45
    • 84885795735 scopus 로고    scopus 로고
    • Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects
    • Luger D, Yang YA, Raviv A, et al. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects. PLoS One. 2013;8(10):e76115.
    • (2013) Plos One , vol.8 , Issue.10
    • Luger, D.1    Yang, Y.A.2    Raviv, A.3
  • 46
    • 84902318266 scopus 로고    scopus 로고
    • Downregulation of CD40 expression contributes to the accumulation of myeloid-derived suppressor cells in gastric tumors
    • Shen J, Chen X, Wang Z, Zhang G, Chen W. Downregulation of CD40 expression contributes to the accumulation of myeloid-derived suppressor cells in gastric tumors. Oncol Lett. 2014;8(2):775–780.
    • (2014) Oncol Lett , vol.8 , Issue.2 , pp. 775-780
    • Shen, J.1    Chen, X.2    Wang, Z.3    Zhang, G.4    Chen, W.5
  • 47
    • 0035164478 scopus 로고    scopus 로고
    • Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer
    • Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–689.
    • (2001) J Immunol , vol.166 , Issue.1 , pp. 678-689
    • Almand, B.1    Clark, J.I.2    Nikitina, E.3
  • 48
    • 84876424760 scopus 로고    scopus 로고
    • Macrophage regulation of tumor responses to anticancer therapies
    • De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 2013;23(3):277–286.
    • (2013) Cancer Cell , vol.23 , Issue.3 , pp. 277-286
    • De Palma, M.1    Lewis, C.E.2
  • 49
    • 84928588528 scopus 로고    scopus 로고
    • Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy
    • Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E, Bergers G. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 2015;11(4):577–591.
    • (2015) Cell Rep , vol.11 , Issue.4 , pp. 577-591
    • Rivera, L.B.1    Meyronet, D.2    Hervieu, V.3    Frederick, M.J.4    Bergsland, E.5    Bergers, G.6
  • 50
    • 84925611946 scopus 로고    scopus 로고
    • Microenvironmental regulation of therapeutic response in cancer
    • Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25(4):198–213.
    • (2015) Trends Cell Biol , vol.25 , Issue.4 , pp. 198-213
    • Klemm, F.1    Joyce, J.A.2
  • 52
    • 84871990400 scopus 로고    scopus 로고
    • Targeting the hallmarks of cancer: Towards a rational approach to next-generation cancer therapy
    • Hainaut P, Plymoth A. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 2013;25(1):50–51.
    • (2013) Curr Opin Oncol , vol.25 , Issue.1 , pp. 50-51
    • Hainaut, P.1    Plymoth, A.2
  • 53
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 54
    • 66149092730 scopus 로고    scopus 로고
    • G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models
    • Shojaei F, Wu X, Qu X, et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009;106(16):6742–6747.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.16 , pp. 6742-6747
    • Shojaei, F.1    Wu, X.2    Qu, X.3
  • 55
    • 34547820876 scopus 로고    scopus 로고
    • Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells
    • Shojaei F, Wu X, Malik AK, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 2007;25(8):911–920.
    • (2007) Nat Biotechnol , vol.25 , Issue.8 , pp. 911-920
    • Shojaei, F.1    Wu, X.2    Malik, A.K.3
  • 56
    • 84883745262 scopus 로고    scopus 로고
    • An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy
    • Chung AS, Wu X, Zhuang G, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19(9):1114–1123.
    • (2013) Nat Med , vol.19 , Issue.9 , pp. 1114-1123
    • Chung, A.S.1    Wu, X.2    Zhuang, G.3
  • 57
    • 84945301921 scopus 로고    scopus 로고
    • Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks
    • Achyut BR, Shankar A, Iskander A, et al. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett. 2015;369(2):416–426.
    • (2015) Cancer Lett , vol.369 , Issue.2 , pp. 416-426
    • Achyut, B.R.1    Shankar, A.2    Iskander, A.3
  • 58
    • 77949900433 scopus 로고    scopus 로고
    • Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: Combating tumor evasion of antiangiogenic therapy
    • Priceman SJ, Sung JL, Shaposhnik Z, et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood. 2010;115(7):1461–1471.
    • (2010) Blood , vol.115 , Issue.7 , pp. 1461-1471
    • Priceman, S.J.1    Sung, J.L.2    Shaposhnik, Z.3
  • 59
    • 84868035933 scopus 로고    scopus 로고
    • Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype
    • Piao Y, Liang J, Holmes L, et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol. 2012;14(11):1379–1392.
    • (2012) Neuro Oncol , vol.14 , Issue.11 , pp. 1379-1392
    • Piao, Y.1    Liang, J.2    Holmes, L.3
  • 60
    • 84880667542 scopus 로고    scopus 로고
    • Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma
    • Lu-Emerson C, Snuderl M, Kirkpatrick ND, et al. Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol. 2013;15(8):1079–1087.
    • (2013) Neuro Oncol , vol.15 , Issue.8 , pp. 1079-1087
    • Lu-Emerson, C.1    Snuderl, M.2    Kirkpatrick, N.D.3
  • 61
    • 84866784798 scopus 로고    scopus 로고
    • Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy
    • DeNardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1(1):54–67.
    • (2011) Cancer Discov , vol.1 , Issue.1 , pp. 54-67
    • Denardo, D.G.1    Brennan, D.J.2    Rexhepaj, E.3
  • 62
    • 84859820567 scopus 로고    scopus 로고
    • Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance
    • Nakasone ES, Askautrud HA, Kees T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012;21(4):488–503.
    • (2012) Cancer Cell , vol.21 , Issue.4 , pp. 488-503
    • Nakasone, E.S.1    Askautrud, H.A.2    Kees, T.3
  • 63
    • 82955189189 scopus 로고    scopus 로고
    • Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer
    • Shree T, Olson OC, Elie BT, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011;25(23):2465–2479.
    • (2011) Genes Dev , vol.25 , Issue.23 , pp. 2465-2479
    • Shree, T.1    Olson, O.C.2    Elie, B.T.3
  • 64
    • 84903990337 scopus 로고    scopus 로고
    • Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis
    • Ding ZC, Lu X, Yu M, et al. Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis. Cancer Res. 2014;74(13):3441–3453.
    • (2014) Cancer Res , vol.74 , Issue.13 , pp. 3441-3453
    • Ding, Z.C.1    Lu, X.2    Yu, M.3
  • 65
    • 84890849340 scopus 로고    scopus 로고
    • KIT oncogene inhibition drives intratumoral macrophage M2 polarization
    • Cavnar MJ, Zeng S, Kim TS, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210(13):2873–2886.
    • (2013) J Exp Med , vol.210 , Issue.13 , pp. 2873-2886
    • Cavnar, M.J.1    Zeng, S.2    Kim, T.S.3
  • 66
    • 84887561907 scopus 로고    scopus 로고
    • Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy
    • Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24(5):589–602.
    • (2013) Cancer Cell , vol.24 , Issue.5 , pp. 589-602
    • Klug, F.1    Prakash, H.2    Huber, P.E.3
  • 67
    • 84872086179 scopus 로고    scopus 로고
    • Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth
    • Bruchard M, Mignot G, Derangere V, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 2013;19(1):57–64.
    • (2013) Nat Med , vol.19 , Issue.1 , pp. 57-64
    • Bruchard, M.1    Mignot, G.2    Derangere, V.3
  • 68
    • 84902465821 scopus 로고    scopus 로고
    • B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas
    • Affara NI, Ruffell B, Medler TR, et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell. 2014;25(6):809–821.
    • (2014) Cancer Cell , vol.25 , Issue.6 , pp. 809-821
    • Affara, N.I.1    Ruffell, B.2    Medler, T.R.3
  • 69
    • 34548805636 scopus 로고    scopus 로고
    • Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response
    • Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977–983.
    • (2007) J Immunol , vol.179 , Issue.2 , pp. 977-983
    • Sinha, P.1    Clements, V.K.2    Bunt, S.K.3    Albelda, S.M.4    Ostrand-Rosenberg, S.5
  • 70
    • 77951086882 scopus 로고    scopus 로고
    • 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity
    • Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70(8):3052–3061.
    • (2010) Cancer Res , vol.70 , Issue.8 , pp. 3052-3061
    • Vincent, J.1    Mignot, G.2    Chalmin, F.3
  • 71
    • 25144466458 scopus 로고    scopus 로고
    • Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity
    • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11(18):6713–6721.
    • (2005) Clin Cancer Res , vol.11 , Issue.18 , pp. 6713-6721
    • Suzuki, E.1    Kapoor, V.2    Jassar, A.S.3    Kaiser, L.R.4    Albelda, S.M.5
  • 73
    • 0026455839 scopus 로고
    • Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: Interrelationship between the alveolar macrophage and the septal fibroblast
    • Rubin P, Finkelstein J, Shapiro D. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys. 1992;24(1):93–101.
    • (1992) Int J Radiat Oncol Biol Phys , vol.24 , Issue.1 , pp. 93-101
    • Rubin, P.1    Finkelstein, J.2    Shapiro, D.3
  • 75
    • 0028141973 scopus 로고
    • Radiation induction of immediate early genes: Effectors of the radiation-stress response
    • Weichselbaum RR, Hallahan D, Fuks Z, Kufe D. Radiation induction of immediate early genes: effectors of the radiation-stress response. Int J Radiat Oncol Biol Phys. 1994;30(1):229–234.
    • (1994) Int J Radiat Oncol Biol Phys , vol.30 , Issue.1 , pp. 229-234
    • Weichselbaum, R.R.1    Hallahan, D.2    Fuks, Z.3    Kufe, D.4
  • 76
    • 0030978490 scopus 로고    scopus 로고
    • Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis
    • Anscher MS, Kong FM, Marks LB, Bentel GC, Jirtle RL. Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys. 1997;37(2):253–258.
    • (1997) Int J Radiat Oncol Biol Phys , vol.37 , Issue.2 , pp. 253-258
    • Anscher, M.S.1    Kong, F.M.2    Marks, L.B.3    Bentel, G.C.4    Jirtle, R.L.5
  • 77
    • 84877273329 scopus 로고    scopus 로고
    • The impact of the myeloid response to radiation therapy
    • 2013
    • Gough MJ, Young K, Crittenden M. The impact of the myeloid response to radiation therapy. Clin Dev Immunol. 2013;2013:281958.
    • (2013) Clin Dev Immunol
    • Gough, M.J.1    Young, K.2    Crittenden, M.3
  • 78
    • 84919489041 scopus 로고    scopus 로고
    • Myeloid-derived cells in tumors: Effects of radiation
    • Vatner RE, Formenti SC. Myeloid-derived cells in tumors: effects of radiation. Semin Radiat Oncol. 2015;25(1):18–27.
    • (2015) Semin Radiat Oncol , vol.25 , Issue.1 , pp. 18-27
    • Vatner, R.E.1    Formenti, S.C.2
  • 79
    • 84928389008 scopus 로고    scopus 로고
    • Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients
    • Napolitano M, D’Alterio C, Cardone E, et al. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget. 2015;6(10):8261–8270.
    • (2015) Oncotarget , vol.6 , Issue.10 , pp. 8261-8270
    • Napolitano, M.1    D’Alterio, C.2    Cardone, E.3
  • 80
    • 84942931851 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy
    • Chen HM, Ma G, Gildener-Leapman N, et al. Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clin Cancer Res. 2015;21(18):4073–4085.
    • (2015) Clin Cancer Res , vol.21 , Issue.18 , pp. 4073-4085
    • Chen, H.M.1    Ma, G.2    Gildener-Leapman, N.3
  • 81
    • 77949697909 scopus 로고    scopus 로고
    • Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice
    • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010;120(3):694–705.
    • (2010) J Clin Invest , vol.120 , Issue.3 , pp. 694-705
    • Kioi, M.1    Vogel, H.2    Schultz, G.3    Hoffman, R.M.4    Harsh, G.R.5    Brown, J.M.6
  • 82
    • 77955019652 scopus 로고    scopus 로고
    • Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation
    • Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010;70(14):5679–5685.
    • (2010) Cancer Res , vol.70 , Issue.14 , pp. 5679-5685
    • Kozin, S.V.1    Kamoun, W.S.2    Huang, Y.3    Dawson, M.R.4    Jain, R.K.5    Duda, D.G.6
  • 84
    • 84877738839 scopus 로고    scopus 로고
    • CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer
    • Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013;73(9):2782–2794.
    • (2013) Cancer Res , vol.73 , Issue.9 , pp. 2782-2794
    • Xu, J.1    Escamilla, J.2    Mok, S.3
  • 85
    • 84875039618 scopus 로고    scopus 로고
    • Combining radiotherapy and cancer immunotherapy: A paradigm shift
    • Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–265.
    • (2013) J Natl Cancer Inst , vol.105 , Issue.4 , pp. 256-265
    • Formenti, S.C.1    Demaria, S.2
  • 86
    • 84880796356 scopus 로고    scopus 로고
    • The peripheral myeloid expansion driven by murine cancer progression is reversed by radiation therapy of the tumor
    • Crittenden MR, Savage T, Cottam B, et al. The peripheral myeloid expansion driven by murine cancer progression is reversed by radiation therapy of the tumor. PLoS One. 2013;8(7):e69527.
    • (2013) Plos One , vol.8 , Issue.7
    • Crittenden, M.R.1    Savage, T.2    Cottam, B.3
  • 87
    • 67650380136 scopus 로고    scopus 로고
    • Biomarkers of response and resistance to antiangiogenic therapy
    • Jain RK, Duda DG, Willett CG, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol. 2009;6(6):327–338.
    • (2009) Nat Rev Clin Oncol , vol.6 , Issue.6 , pp. 327-338
    • Jain, R.K.1    Duda, D.G.2    Willett, C.G.3
  • 88
    • 84904406680 scopus 로고    scopus 로고
    • Tumor-associated macrophages: From mechanisms to therapy
    • Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 49-61
    • Noy, R.1    Pollard, J.W.2
  • 89
    • 84938597972 scopus 로고    scopus 로고
    • Myeloid cells as targets for therapy in solid tumors
    • Cotechini T, Medler TR, Coussens LM. Myeloid cells as targets for therapy in solid tumors. Cancer J. 2015;21(4):343–350.
    • (2015) Cancer J , vol.21 , Issue.4 , pp. 343-350
    • Cotechini, T.1    Medler, T.R.2    Coussens, L.M.3
  • 90
    • 84885673911 scopus 로고    scopus 로고
    • Inferring tumour purity and stromal and immune cell admixture from expression data
    • Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.
    • (2013) Nat Commun , vol.4 , pp. 2612
    • Yoshihara, K.1    Shahmoradgoli, M.2    Martinez, E.3
  • 91
    • 84865743056 scopus 로고    scopus 로고
    • CTen: A web-based platform for identifying enriched cell types from heterogeneous microarray data
    • Shoemaker JE, Lopes TJ, Ghosh S, Matsuoka Y, Kawaoka Y, Kitano H. CTen: a web-based platform for identifying enriched cell types from heterogeneous microarray data. BMC Genomics. 2012;13:460.
    • (2012) BMC Genomics , vol.13 , pp. 460
    • Shoemaker, J.E.1    Lopes, T.J.2    Ghosh, S.3    Matsuoka, Y.4    Kawaoka, Y.5    Kitano, H.6
  • 92
    • 84899580916 scopus 로고    scopus 로고
    • A systems biology approach identifies effective tumor-stroma common targets for oral squamous cell carcinoma
    • Meng W, Wu Y, He X, et al. A systems biology approach identifies effective tumor-stroma common targets for oral squamous cell carcinoma. Cancer Res. 2014;74(8):2306–2315.
    • (2014) Cancer Res , vol.74 , Issue.8 , pp. 2306-2315
    • Meng, W.1    Wu, Y.2    He, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.