메뉴 건너뛰기




Volumn 39, Issue 4, 2016, Pages 368-375

Sdm: A reproducible and extensible R platform for species distribution modelling

Author keywords

[No Author keywords available]

Indexed keywords

CELLULAR AUTOMATON; DATA ACQUISITION; DATA SET; ECOLOGICAL MODELING; SIMULATION; SOFTWARE; SPATIOTEMPORAL ANALYSIS;

EID: 84959475541     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/ecog.01881     Document Type: Article
Times cited : (667)

References (60)
  • 1
    • 78650560100 scopus 로고    scopus 로고
    • An object-oriented framework for statistical simulation: the R package simFrame
    • Alfons, A. et al. 2010. An object-oriented framework for statistical simulation: the R package simFrame. - J. Stat. Softw. 37: 1-36.
    • (2010) J. Stat. Softw , vol.37 , pp. 1-36
    • Alfons, A.1
  • 2
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • Araújo, M. B. and New, M. 2007. Ensemble forecasting of species distributions. - Trends Ecol. Evol. 22: 42-47.
    • (2007) Trends Ecol. Evol , vol.22 , pp. 42-47
    • Araújo, M.B.1    New, M.2
  • 3
    • 84864255928 scopus 로고    scopus 로고
    • Uses and misuses of bioclimatic envelope modeling
    • Araújo, M. B. and Peterson, A. T. 2012. Uses and misuses of bioclimatic envelope modeling. - Ecology 93: 1527-1539.
    • (2012) Ecology , vol.93 , pp. 1527-1539
    • Araújo, M.B.1    Peterson, A.T.2
  • 4
    • 24344464067 scopus 로고    scopus 로고
    • Validation of species-climate impact models under climate change
    • Araújo, M. B. et al. 2005a. Validation of species-climate impact models under climate change. - Global Change Biol. 11: 1504-1513.
    • (2005) Global Change Biol , vol.11 , pp. 1504-1513
    • Araújo, M.B.1
  • 5
    • 24344458281 scopus 로고    scopus 로고
    • Reducing uncertainty in projections of extinction risk from climate change
    • Araújo, M. B. et al. 2005b. Reducing uncertainty in projections of extinction risk from climate change. - Global Ecol. Biogeogr. 14: 529-538.
    • (2005) Global Ecol. Biogeogr , vol.14 , pp. 529-538
    • Araújo, M.B.1
  • 6
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. - Ecol. Model. 200: 1-19.
    • (2007) Ecol. Model , vol.200 , pp. 1-19
    • Austin, M.1
  • 7
    • 84867148221 scopus 로고    scopus 로고
    • Selecting pseudo-absences for species distribution models: how, where and how many? - Methods Ecol
    • Barbet-Massin, M. et al. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? - Methods Ecol. Evol. 3: 327-338.
    • (2012) Evol , vol.3 , pp. 327-338
    • Barbet-Massin, M.1
  • 8
    • 63849138533 scopus 로고    scopus 로고
    • Individualistic vs community modelling of species distributions under climate change
    • Baselga, A. and Araújo, M. B. 2009. Individualistic vs community modelling of species distributions under climate change. - Ecography 32: 55-65.
    • (2009) Ecography , vol.32 , pp. 55-65
    • Baselga, A.1    Araújo, M.B.2
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. - Mach. Learn. 45: 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 13
    • 0027130075 scopus 로고
    • DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals
    • Carpenter, G. et al. 1993. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. - Biodivers. Conserv. 2: 667-680.
    • (1993) Biodivers. Conserv , vol.2 , pp. 667-680
    • Carpenter, G.1
  • 14
    • 84907212979 scopus 로고    scopus 로고
    • Object-oriented programming, functional programming and R
    • Chambers, J. M. 2014. Object-oriented programming, functional programming and R. - Stat. Sci. 29: 167-180.
    • (2014) Stat. Sci , vol.29 , pp. 167-180
    • Chambers, J.M.1
  • 16
    • 78751582399 scopus 로고    scopus 로고
    • openModeller: a generic approach to species' potential distribution modelling
    • de Souza Muñoz, M. et al. 2009. openModeller: a generic approach to species' potential distribution modelling. - GeoInformatica 15: 111-135.
    • (2009) GeoInformatica , vol.15 , pp. 111-135
    • de Souza Muñoz, M.1
  • 17
    • 72049091777 scopus 로고    scopus 로고
    • Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change
    • Diniz-Filho, J. A. F. et al. 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. - Ecography 32: 897-906.
    • (2009) Ecography , vol.32 , pp. 897-906
    • Diniz-Filho, J.A.F.1
  • 18
    • 84900284075 scopus 로고    scopus 로고
    • Modelling species' distributions
    • In: Jopp, F. (eds), Springer 179-196.
    • Dormann, C. F. 2011. Modelling species' distributions. - In: Jopp, F. et al. (eds), Modelling complex ecological dynamics. Springer, pp. 179-196.
    • (2011) Modelling complex ecological dynamics
    • Dormann, C.F.1
  • 19
    • 84874725861 scopus 로고    scopus 로고
    • Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
    • Dormann, C. F. et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. - Ecography 36: 27-46.
    • (2013) Ecography , vol.36 , pp. 27-46
    • Dormann, C.F.1
  • 20
    • 22144478718 scopus 로고    scopus 로고
    • The evaluation strip: a new and robust method for plotting predicted responses from species distribution models
    • Elith, J. et al. 2005. The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. - Ecol. Model. 186: 280-289.
    • (2005) Ecol. Model , vol.186 , pp. 280-289
    • Elith, J.1
  • 21
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. - Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 22
    • 0037301478 scopus 로고    scopus 로고
    • Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance
    • Farber, O. and Kadmon, R. 2003. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. - Ecol. Model. 160: 115-130.
    • (2003) Ecol. Model , vol.160 , pp. 115-130
    • Farber, O.1    Kadmon, R.2
  • 23
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding, A. H. and Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. - Environ. Conserv. 24: 38-49.
    • (1997) Environ. Conserv , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 24
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. 1991. Multivariate adaptive regression splines. - Ann. Stat. 19: 1-67.
    • (1991) Ann. Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 25
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J. H. 2001. Greedy function approximation: a gradient boosting machine. - Ann. Stat. 29: 1189-1232.
    • (2001) Ann. Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 26
    • 84858446826 scopus 로고    scopus 로고
    • Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates
    • Garcia, R. A. et al. 2012. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. - Global Change Biol. 18: 1253-1269.
    • (2012) Global Change Biol , vol.18 , pp. 1253-1269
    • Garcia, R.A.1
  • 27
    • 4344601500 scopus 로고    scopus 로고
    • New developments in museum-based informatics and applications in biodiversity analysis
    • Graham, C. H. et al. 2004. New developments in museum-based informatics and applications in biodiversity analysis. - Trends Ecol. Evol. 19: 497-503.
    • (2004) Trends Ecol. Evol , vol.19 , pp. 497-503
    • Graham, C.H.1
  • 28
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan, A. and Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. - Ecol. Model. 135: 147-186.
    • (2000) Ecol. Model , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 29
    • 77957164186 scopus 로고    scopus 로고
    • ModEco: an integrated software package for ecological niche modeling
    • Guo, Q. and Liu, Y. 2010. ModEco: an integrated software package for ecological niche modeling. - Ecography 33: 637-642.
    • (2010) Ecography , vol.33 , pp. 637-642
    • Guo, Q.1    Liu, Y.2
  • 31
    • 84948746712 scopus 로고
    • Flexible discriminant analysis by optimal scoring
    • Hastie, T. et al. 1994. Flexible discriminant analysis by optimal scoring. - J. Am. Stat. Assoc. 89: 1255-1270.
    • (1994) J. Am. Stat. Assoc , vol.89 , pp. 1255-1270
    • Hastie, T.1
  • 33
    • 33748537148 scopus 로고    scopus 로고
    • Methods and uncertainties in bioclimatic envelope modelling under climate change
    • Heikkinen, R. K. et al. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. - Prog. Phys. Geogr. 30: 751-777.
    • (2006) Prog. Phys. Geogr , vol.30 , pp. 751-777
    • Heikkinen, R.K.1
  • 35
    • 0003337955 scopus 로고    scopus 로고
    • Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?
    • Hirzel, A. H. et al. 2002. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? - Ecology 83: 2027-2036.
    • (2002) Ecology , vol.83 , pp. 2027-2036
    • Hirzel, A.H.1
  • 36
    • 84877785791 scopus 로고    scopus 로고
    • Troubling trends in scientific software use
    • Joppa, L. N. et al. 2013. Troubling trends in scientific software use. - Science 340: 814-815.
    • (2013) Science , vol.340 , pp. 814-815
    • Joppa, L.N.1
  • 37
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn, M. 2008. Building predictive models in R using the caret package. - J. Stat. Softw. 28: 1-26.
    • (2008) J. Stat. Softw , vol.28 , pp. 1-26
    • Kuhn, M.1
  • 38
    • 84888863508 scopus 로고    scopus 로고
    • Community-level vs species-specific approaches to model selection
    • Madon, B. et al. 2013. Community-level vs species-specific approaches to model selection. - Ecography 36: 1291-1298.
    • (2013) Ecography , vol.36 , pp. 1291-1298
    • Madon, B.1
  • 39
    • 84944477553 scopus 로고
    • Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation
    • Marquardt, D. W. 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. - Technometrics 12: 591-612.
    • (1970) Technometrics , vol.12 , pp. 591-612
    • Marquardt, D.W.1
  • 41
    • 63849306338 scopus 로고    scopus 로고
    • Methods to quantify variable importance: implications for the analysis of noisy ecological data
    • Murray, K. and Conner, M. M. 2009. Methods to quantify variable importance: implications for the analysis of noisy ecological data. - Ecology 90: 348-355.
    • (2009) Ecology , vol.90 , pp. 348-355
    • Murray, K.1    Conner, M.M.2
  • 42
    • 84862226409 scopus 로고    scopus 로고
    • StellaR: a software to translate Stella models into R open-source environment
    • Naimi, B. and Voinov, A. 2012. StellaR: a software to translate Stella models into R open-source environment. - Environ. Model. Softw. 38: 117-118.
    • (2012) Environ. Model. Softw , vol.38 , pp. 117-118
    • Naimi, B.1    Voinov, A.2
  • 43
    • 79960237642 scopus 로고    scopus 로고
    • Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling
    • Naimi, B. et al. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. - J. Biogeogr. 38: 1497-1509.
    • (2011) J. Biogeogr , vol.38 , pp. 1497-1509
    • Naimi, B.1
  • 44
    • 84892673138 scopus 로고    scopus 로고
    • Where is positional uncertainty a problem for species distribution modelling?
    • Naimi, B. et al. 2014. Where is positional uncertainty a problem for species distribution modelling? - Ecography 37: 191-203.
    • (2014) Ecography , vol.37 , pp. 191-203
    • Naimi, B.1
  • 45
    • 33748501576 scopus 로고    scopus 로고
    • Model-based uncertainty in species range prediction
    • Pearson, R. G. et al. 2006. Model-based uncertainty in species range prediction. - J. Biogeogr. 33: 1704-1711.
    • (2006) J. Biogeogr , vol.33 , pp. 1704-1711
    • Pearson, R.G.1
  • 46
    • 33845604583 scopus 로고    scopus 로고
    • Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar
    • Pearson, R. G. et al. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. - J. Biogeogr. 34: 102-117.
    • (2007) J. Biogeogr , vol.34 , pp. 102-117
    • Pearson, R.G.1
  • 48
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. - Ecol. Model. 190: 231-259.
    • (2006) Ecol. Model , vol.190 , pp. 231-259
    • Phillips, S.J.1
  • 49
    • 33646543813 scopus 로고    scopus 로고
    • Are niche-based species distribution models transferable in space? - J
    • Randin, C. F. et al. 2006. Are niche-based species distribution models transferable in space? - J. Biogeogr. 33: 1689-1703.
    • (2006) Biogeogr , vol.33 , pp. 1689-1703
    • Randin, C.F.1
  • 50
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. - Psychol. Rev. 65: 386.
    • (1958) Psychol. Rev , vol.65 , pp. 386
    • Rosenblatt, F.1
  • 51
    • 33745322515 scopus 로고    scopus 로고
    • Elevational gradient analyses and the use of historical museum specimens: a cautionary tale
    • Rowe, R. J. 2005. Elevational gradient analyses and the use of historical museum specimens: a cautionary tale. - J. Biogeogr. 32: 1883-1897.
    • (2005) J. Biogeogr , vol.32 , pp. 1883-1897
    • Rowe, R.J.1
  • 52
    • 84863982602 scopus 로고    scopus 로고
    • Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions
    • Royle, J. A. et al. 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. - Methods Ecol. Evol. 3: 545-554.
    • (2012) Methods Ecol. Evol , vol.3 , pp. 545-554
    • Royle, J.A.1
  • 53
    • 4644223644 scopus 로고    scopus 로고
    • An evaluation of methods for modelling species distributions
    • Segurado, P. and Araújo, M. B. 2004. An evaluation of methods for modelling species distributions. - J. Biogeogr. 31: 1555-1568.
    • (2004) J. Biogeogr , vol.31 , pp. 1555-1568
    • Segurado, P.1    Araújo, M.B.2
  • 54
    • 79954508964 scopus 로고    scopus 로고
    • Solving differential equations in R
    • In: Psihoyios, G. and Tsitouras, C. (eds), Am. Inst. Physics -.
    • Soetaert, K. et al. 2010. Solving differential equations in R. - In: Psihoyios, G. and Tsitouras, C. (eds), Numerical analysis and applied mathematics, vol. I-III. Am. Inst. Physics, pp. 31-34.
    • (2010) Numerical analysis and applied mathematics , vol.1-3 , pp. 31-34
    • Soetaert, K.1
  • 55
    • 0032903209 scopus 로고    scopus 로고
    • The GARP modelling system: problems and solutions to automated spatial prediction
    • Stockwell, D. and Peters, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. - Int. J. Geogr. Inform. Sci. 13: 143-158.
    • (1999) Int. J. Geogr. Inform. Sci , vol.13 , pp. 143-158
    • Stockwell, D.1    Peters, D.2
  • 56
    • 1542289824 scopus 로고    scopus 로고
    • Do we need land-cover data to model species distributions in Europe? - J
    • Thuiller, W. et al. 2004. Do we need land-cover data to model species distributions in Europe? - J. Biogeogr. 31: 353-361.
    • (2004) Biogeogr , vol.31 , pp. 353-361
    • Thuiller, W.1
  • 57
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD - a platform for ensemble forecasting of species distributions
    • Thuiller, W. et al. 2009. BIOMOD - a platform for ensemble forecasting of species distributions. - Ecography 32: 369-373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1
  • 60
    • 84855178062 scopus 로고    scopus 로고
    • eBird: engaging birders in science and conservation
    • Wood, C. et al. 2011. eBird: engaging birders in science and conservation. - PLoS Biol. 9: e1001220.
    • (2011) PLoS Biol , vol.9 , pp. e1001220
    • Wood, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.