메뉴 건너뛰기




Volumn 38, Issue 8, 2011, Pages 1497-1509

Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling

Author keywords

Artificial dataset; Error propagation; Positional uncertainty; Spatial autocorrelation; Species distribution models; Stochastic simulation

Indexed keywords

ARTIFICIAL INTELLIGENCE; AUTOCORRELATION; DATA SET; ECOLOGICAL MODELING; ENTROPY; ENVIRONMENTAL GRADIENT; GENETIC ALGORITHM; LINEARITY; MAGNITUDE; NUMERICAL MODEL; POPULATION DISTRIBUTION; SPECIES OCCURRENCE; STATISTICAL ANALYSIS; STOCHASTICITY;

EID: 79960237642     PISSN: 03050270     EISSN: 13652699     Source Type: Journal    
DOI: 10.1111/j.1365-2699.2011.02523.x     Document Type: Article
Times cited : (97)

References (56)
  • 1
    • 0037446358 scopus 로고    scopus 로고
    • Evaluating predictive models of species' distributions: criteria for selecting optimal models
    • Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211-232.
    • (2003) Ecological Modelling , vol.162 , pp. 211-232
    • Anderson, R.P.1    Lew, D.2    Peterson, A.T.3
  • 2
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araújo, M.B. & Guisan, A. (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677-1688.
    • (2006) Journal of Biogeography , vol.33 , pp. 1677-1688
    • Araújo, M.B.1    Guisan, A.2
  • 3
    • 0027334209 scopus 로고
    • The effect of spatial-resolution on the experimental variogram of airborne MSS imagery
    • Atkinson, P.M. (1993) The effect of spatial-resolution on the experimental variogram of airborne MSS imagery. International Journal of Remote Sensing, 14, 1005-1011.
    • (1993) International Journal of Remote Sensing , vol.14 , pp. 1005-1011
    • Atkinson, P.M.1
  • 4
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin, M. (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling, 200, 1-19.
    • (2007) Ecological Modelling , vol.200 , pp. 1-19
    • Austin, M.1
  • 5
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101-118.
    • (2002) Ecological Modelling , vol.157 , pp. 101-118
    • Austin, M.P.1
  • 6
    • 33749998362 scopus 로고    scopus 로고
    • Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory
    • Austin, M.P., Belbin, L., Meyers, J.A., Doherty, M.D. & Luoto, M. (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecological Modelling, 199, 197-216.
    • (2006) Ecological Modelling , vol.199 , pp. 197-216
    • Austin, M.P.1    Belbin, L.2    Meyers, J.A.3    Doherty, M.D.4    Luoto, M.5
  • 8
    • 0022903880 scopus 로고
    • Weighted averaging, logistic-regression and the Gaussian response model
    • ter Braak, C.J.F. & Looman, C.W.N. (1986) Weighted averaging, logistic-regression and the Gaussian response model. Vegetatio, 65, 3-11.
    • (1986) Vegetatio , vol.65 , pp. 3-11
    • ter Braak, C.J.F.1    Looman, C.W.N.2
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0027790179 scopus 로고
    • A fast and exact method for multidimensional Gaussian stochastic simulations
    • Dietrich, C.R. & Newsam, G.N. (1993) A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resources Research, 29, 2861-2869.
    • (1993) Water Resources Research , vol.29 , pp. 2861-2869
    • Dietrich, C.R.1    Newsam, G.N.2
  • 14
    • 0002275411 scopus 로고    scopus 로고
    • Conditional simulation: an alternative to estimation for achieving mapping objectives
    • ed. by A. Stein, F. Meer and B. Gorte Springer, Dordrecht.
    • Dungan, J. (1999) Conditional simulation: an alternative to estimation for achieving mapping objectives. Spatial statistics for remote sensing (ed. by A. Stein, F. Meer and B. Gorte), pp. 135-152. Springer, Dordrecht.
    • (1999) Spatial statistics for remote sensing , pp. 135-152
    • Dungan, J.1
  • 15
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models
    • Elith, J. & Graham, C.H. (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 16
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
    • (2009) Annual Review of Ecology, Evolution, and Systematics , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 17
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1    Graham, C.H.2    Anderson, R.P.3
  • 19
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
    • (1997) Environmental Conservation , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 21
    • 48149105984 scopus 로고    scopus 로고
    • A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa
    • Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58.
    • (2008) Ecological Modelling , vol.217 , pp. 48-58
    • Freeman, E.A.1    Moisen, G.G.2
  • 22
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J.H. (1991) Multivariate adaptive regression splines. Annals of Statistics, 19, 1-67.
    • (1991) Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 23
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J.H. (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 24
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman, M. (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675-701.
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 27
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.
    • (2000) Ecological Modelling , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 29
    • 79960249880 scopus 로고    scopus 로고
    • On the effect of positional uncertainty in field measurements on the atmospheric correction of remotely sensed imagery
    • (ed. by X. Sánchez-Vila, J. Carrera and J.J. Gómez-Hernández) Springer, Dordrecht.
    • Hamm, N., Atkinson, P.M. & Milton, E.J. (2004) On the effect of positional uncertainty in field measurements on the atmospheric correction of remotely sensed imagery. geoENV IV - geostatistics for environmental applications (ed. by X. Sánchez-Vila, J. Carrera and J.J. Gómez-Hernández), pp. 91-102. Springer, Dordrecht.
    • (2004) geoENV IV - geostatistics for environmental applications , pp. 91-102
    • Hamm, N.1    Atkinson, P.M.2    Milton, E.J.3
  • 31
    • 0000210741 scopus 로고    scopus 로고
    • Propagation of error in spatial modelling with GIS
    • ed. by P. Longley, M. Goodchild, D. Maguire and D. Rhind) John Wiley and Sons, Chichester.
    • Heuvelink, G.B.M. (1999) Propagation of error in spatial modelling with GIS. Geographical information systems (ed. by P. Longley, M. Goodchild, D. Maguire and D. Rhind), pp. 207-217. John Wiley and Sons, Chichester.
    • (1999) Geographical information systems , pp. 207-217
    • Heuvelink, G.B.M.1
  • 33
    • 0035891825 scopus 로고    scopus 로고
    • Assessing habitat-suitability models with a virtual species
    • Hirzel, A.H., Helfer, V. & Metral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145, 111-121.
    • (2001) Ecological Modelling , vol.145 , pp. 111-121
    • Hirzel, A.H.1    Helfer, V.2    Metral, F.3
  • 34
    • 73649109908 scopus 로고    scopus 로고
    • The effect of prevalence and its interaction with sample size on the reliability of species distribution models
    • Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2009) The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 10, 196-205.
    • (2009) Community Ecology , vol.10 , pp. 196-205
    • Jiménez-Valverde, A.1    Lobo, J.M.2    Hortal, J.3
  • 35
    • 40849114636 scopus 로고    scopus 로고
    • Sensitivity of species-distribution models to error, bias, and model design: an application to resource selection functions for woodland caribou
    • Johnson, C.J. & Gillingham, M.P. (2008) Sensitivity of species-distribution models to error, bias, and model design: an application to resource selection functions for woodland caribou. Ecological Modelling, 213, 143-155.
    • (2008) Ecological Modelling , vol.213 , pp. 143-155
    • Johnson, C.J.1    Gillingham, M.P.2
  • 36
    • 33645954864 scopus 로고    scopus 로고
    • Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish
    • Leathwick, J.R., Rowe, D., Richardson, J., Elith, J. & Hastie, T. (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology, 50, 2034-2052.
    • (2005) Freshwater Biology , vol.50 , pp. 2034-2052
    • Leathwick, J.R.1    Rowe, D.2    Richardson, J.3    Elith, J.4    Hastie, T.5
  • 37
    • 0027881344 scopus 로고
    • Spatial autocorrelation - trouble or new paradigm
    • Legendre, P. (1993) Spatial autocorrelation - trouble or new paradigm. Ecology, 74, 1659-1673.
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 38
    • 0034770214 scopus 로고    scopus 로고
    • Evaluating presence-absence models in ecology: the need to account for prevalence
    • Manel, S., Williams, H.C. & Ormerod, S.J. (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921-931.
    • (2001) Journal of Applied Ecology , vol.38 , pp. 921-931
    • Manel, S.1    Williams, H.C.2    Ormerod, S.J.3
  • 40
    • 34447638499 scopus 로고    scopus 로고
    • Predicting species distributions: a critical comparison of the most common statistical models using artificial species
    • Meynard, C.N. & Quinn, J.F. (2007) Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography, 34, 1455-1469.
    • (2007) Journal of Biogeography , vol.34 , pp. 1455-1469
    • Meynard, C.N.1    Quinn, J.F.2
  • 41
    • 67149137995 scopus 로고    scopus 로고
    • Effects of species and habitat positional errors on the performance and interpretation of species distribution models
    • Osborne, P.E. & Leitão, P.J. (2009) Effects of species and habitat positional errors on the performance and interpretation of species distribution models. Diversity and Distributions, 15, 671-681.
    • (2009) Diversity and Distributions , vol.15 , pp. 671-681
    • Osborne, P.E.1    Leitão, P.J.2
  • 42
    • 33748547836 scopus 로고    scopus 로고
    • Uses and requirements of ecological niche models and related distributional models
    • Peterson, A.T. (2006) Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59-72.
    • (2006) Biodiversity Informatics , vol.3 , pp. 59-72
    • Peterson, A.T.1
  • 43
    • 34547923699 scopus 로고    scopus 로고
    • Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent
    • Peterson, A.T., Papes, M. & Eaton, M. (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30, 550-560.
    • (2007) Ecography , vol.30 , pp. 550-560
    • Peterson, A.T.1    Papes, M.2    Eaton, M.3
  • 44
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
    • Phillips, S.J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
    • (2008) Ecography , vol.31 , pp. 161-175
    • Phillips, S.J.1    Dudík, M.2
  • 45
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
    • (2006) Ecological Modelling , vol.190 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 46
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core TeamR Foundation for Statistical Computing, Vienna.
    • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
    • (2008) R: a language and environment for statistical computing
  • 47
    • 33745322515 scopus 로고    scopus 로고
    • Elevational gradient analyses and the use of historical museum specimens: a cautionary tale
    • Rowe, R.J. (2005) Elevational gradient analyses and the use of historical museum specimens: a cautionary tale. Journal of Biogeography, 32, 1883-1897.
    • (2005) Journal of Biogeography , vol.32 , pp. 1883-1897
    • Rowe, R.J.1
  • 48
    • 68949105820 scopus 로고    scopus 로고
    • The effect of species response form on species distribution model prediction and inference
    • Santika, T. & Hutchinson, M.F. (2009) The effect of species response form on species distribution model prediction and inference. Ecological Modelling, 220, 2365-2379.
    • (2009) Ecological Modelling , vol.220 , pp. 2365-2379
    • Santika, T.1    Hutchinson, M.F.2
  • 51
    • 4644223644 scopus 로고    scopus 로고
    • An evaluation of methods for modelling species distributions
    • Segurado, P. & Araújo, M.B. (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography, 31, 1555-1568.
    • (2004) Journal of Biogeography , vol.31 , pp. 1555-1568
    • Segurado, P.1    Araújo, M.B.2
  • 54
    • 0001195680 scopus 로고
    • Induction of sets of rules from animal distribution data: a robust and informative method of data analysis
    • Stockwell, D.R.B. & Noble, I.R. (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematics and Computers in Simulation, 33, 385-390.
    • (1992) Mathematics and Computers in Simulation , vol.33 , pp. 385-390
    • Stockwell, D.R.B.1    Noble, I.R.2
  • 55
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD - a platform for ensemble forecasting of species distributions
    • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1    Lafourcade, B.2    Engler, R.3    Araújo, M.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.