-
1
-
-
0029507498
-
Local indicators of spatial association - LISA
-
Anselin L. 1995. Local indicators of spatial association - LISA. Geogr. Anal. 27: 93-115.
-
(1995)
Geogr. Anal.
, vol.27
, pp. 93-115
-
-
Anselin, L.1
-
2
-
-
33748529602
-
Five (or so) challenges for species distribution modelling
-
Araújo M. B. and Guisan A. 2006. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33: 1677-1688.
-
(2006)
J. Biogeogr.
, vol.33
, pp. 1677-1688
-
-
Araújo, M.B.1
Guisan, A.2
-
3
-
-
33845633261
-
Ensemble forecasting of species distributions
-
Araújo M. B. and New M. 2006. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 42-47.
-
(2006)
Trends Ecol. Evol.
, vol.22
, pp. 42-47
-
-
Araújo, M.B.1
New, M.2
-
4
-
-
0037202447
-
Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
-
Austin M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157: 101-118.
-
(2002)
Ecol. Model.
, vol.157
, pp. 101-118
-
-
Austin, M.1
-
5
-
-
33749998362
-
Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory
-
Austin M. P. et al. 2006. Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199: 197-216.
-
(2006)
Ecol. Model.
, vol.199
, pp. 197-216
-
-
Austin, M.P.1
-
6
-
-
0018441920
-
A physically based, variable contributing area model of basin hydrology
-
Beven K. and Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24: 43-69.
-
(1979)
Hydrol. Sci. J.
, vol.24
, pp. 43-69
-
-
Beven, K.1
Kirkby, M.2
-
7
-
-
0035478854
-
Random forests
-
Breiman L. 2001. Random forests. Mach. Learn. 45: 5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
45249096467
-
Predicting species distributions across the Amazonian and Andean regions using remote sensing data
-
Buermann W. et al. 2008. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 35: 1160-1176.
-
(2008)
J. Biogeogr.
, vol.35
, pp. 1160-1176
-
-
Buermann, W.1
-
9
-
-
84869142011
-
Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models
-
Bystriakova N. et al. 2012. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst. Biodivers. 10: 305-315.
-
(2012)
Syst. Biodivers.
, vol.10
, pp. 305-315
-
-
Bystriakova, N.1
-
12
-
-
0038820364
-
Spatial processes: models and applications
-
Cliff A. D. and Ord J. K. 1981. Spatial processes: models and applications. Pion.
-
(1981)
Pion.
-
-
Cliff, A.D.1
Ord, J.K.2
-
14
-
-
38449114584
-
Random forests for classification in ecology
-
Cutler D. R. et al. 2007. Random forests for classification in ecology. Ecology 88: 2783-2792.
-
(2007)
Ecology
, vol.88
, pp. 2783-2792
-
-
Cutler, D.R.1
-
16
-
-
84874720715
-
Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
-
Dormann C. F. et al. 2012. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 35: 1-20.
-
(2012)
Ecography
, vol.35
, pp. 1-20
-
-
Dormann, C.F.1
-
18
-
-
63849287596
-
Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models
-
Elith J. and Graham C. H. 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 66-77.
-
(2009)
Ecography
, vol.32
, pp. 66-77
-
-
Elith, J.1
Graham, C.H.2
-
19
-
-
33645917058
-
Novel methods improve prediction of species' distributions from occurrence data
-
Elith J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
-
(2006)
Ecography
, vol.29
, pp. 129-151
-
-
Elith, J.1
-
20
-
-
44849118698
-
A working guide to boosted regression trees
-
Elith J. et al. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-813.
-
(2008)
J. Anim. Ecol.
, vol.77
, pp. 802-813
-
-
Elith, J.1
-
21
-
-
1942456846
-
An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data
-
Engler R. et al. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41: 263-274.
-
(2004)
J. Appl. Ecol.
, vol.41
, pp. 263-274
-
-
Engler, R.1
-
22
-
-
0037301478
-
Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance
-
Farber O. and Kadmon R. 2003. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Model. 160: 115-130.
-
(2003)
Ecol. Model.
, vol.160
, pp. 115-130
-
-
Farber, O.1
Kadmon, R.2
-
23
-
-
77952068730
-
Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering
-
Feeley K. J. and Silman M. R. 2010. Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering. J. Biogeogr. 37: 733-740.
-
(2010)
J. Biogeogr.
, vol.37
, pp. 733-740
-
-
Feeley, K.J.1
Silman, M.R.2
-
24
-
-
0030953391
-
A review of methods for the assessment of prediction errors in conservation presence/absence models
-
Fielding A. H. and Bell J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 38-49.
-
(1997)
Environ. Conserv.
, vol.24
, pp. 38-49
-
-
Fielding, A.H.1
Bell, J.F.2
-
25
-
-
84923957743
-
-
Mapping species distributions: spatial inference and prediction, Cambridge Univ. Press.
-
Franklin J. 2010. Mapping species distributions: spatial inference and prediction. - Cambridge Univ. Press.
-
(2010)
-
-
Franklin, J.1
-
26
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman J. H. 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29: 1189-1232.
-
(2001)
Ann. Stat.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
27
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32: 675-701.
-
(1937)
J. Am. Stat. Assoc.
, vol.32
, pp. 675-701
-
-
Friedman, M.1
-
29
-
-
84977363017
-
The analysis of spatial association by use of distance statistics
-
Getis A. and Ord J. K. 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24: 189-206.
-
(1992)
Geogr. Anal.
, vol.24
, pp. 189-206
-
-
Getis, A.1
Ord, J.K.2
-
32
-
-
4344601500
-
New developments in museum-based informatics and applications in biodiversity analysis
-
Graham C. H. et al. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19: 497-503.
-
(2004)
Trends Ecol. Evol.
, vol.19
, pp. 497-503
-
-
Graham, C.H.1
-
33
-
-
38349178606
-
The influence of spatial errors in species occurrence data used in distribution models
-
Graham C. H. et al. 2008. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45: 239-247.
-
(2008)
J. Appl. Ecol.
, vol.45
, pp. 239-247
-
-
Graham, C.H.1
-
34
-
-
1342330862
-
Confronting multicollinearity in ecological multiple regression
-
Graham M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809-2815.
-
(2003)
Ecology
, vol.84
, pp. 2809-2815
-
-
Graham, M.H.1
-
35
-
-
40349093056
-
What matters for predicting the occurrences of trees: techniques, data, or species' characteristics?
-
Guisan A. et al. 2007. What matters for predicting the occurrences of trees: techniques, data, or species' characteristics? Ecol. Monogr. 77: 615-630.
-
(2007)
Ecol. Monogr.
, vol.77
, pp. 615-630
-
-
Guisan, A.1
-
36
-
-
50449103243
-
Georeferencing locality descriptions and computing associated uncertainty using a probabilistic approach
-
Guo Q. et al. 2008. Georeferencing locality descriptions and computing associated uncertainty using a probabilistic approach. Int. J. Geogr. Inform. Sci. 22: 1067-1090.
-
(2008)
Int. J. Geogr. Inform. Sci.
, vol.22
, pp. 1067-1090
-
-
Guo, Q.1
-
37
-
-
79960249880
-
On the effect of positional uncertainty in field measurements on the atmospheric correction of remotely sensed imagery
-
Sanchez-Vila X. (eds), Springer.
-
Hamm N. et al. 2004. On the effect of positional uncertainty in field measurements on the atmospheric correction of remotely sensed imagery. - In: Sanchez-Vila X. et al. (eds), geoENV IV - geostatistics for environmental applications. Springer, pp. 91-102.
-
(2004)
geoENV IV - geostatistics for environmental applications
, pp. 91-102
-
-
Hamm, N.1
-
38
-
-
84864031555
-
A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing
-
Hamm N. A. S. et al. 2012. A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing. Remote Sens. Environ. 124: 666-678.
-
(2012)
Remote Sens. Environ.
, vol.124
, pp. 666-678
-
-
Hamm, N.A.S.1
-
39
-
-
84892679149
-
-
GAM: generalized additive models.
-
Hastie T. 2011. GAM: generalized additive models.
-
(2011)
-
-
Hastie, T.1
-
40
-
-
84892669750
-
-
Generalised additive models. - Chapman and Hall.
-
Hastie T. and Tibshirani R. 1990. Generalised additive models. - Chapman and Hall.
-
(1990)
-
-
Hastie, T.1
Tibshirani, R.2
-
41
-
-
33750352002
-
The effect of sample size and species characteristics on performance of different species distribution modeling methods
-
Hernandez P. A. et al. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.
-
(2006)
Ecography
, vol.29
, pp. 773-785
-
-
Hernandez, P.A.1
-
42
-
-
0000210741
-
Propagation of error in spatial modelling with GIS
-
Longley P. (eds), Wiley.
-
Heuvelink G. B. M. 1999. Propagation of error in spatial modelling with GIS. - In: Longley P. et al. (eds), Geographical information systems. Wiley, pp. 207-217.
-
(1999)
Geographical information systems
, pp. 207-217
-
-
Heuvelink, G.B.M.1
-
43
-
-
84892678155
-
-
Raster: geographic analysis and modeling with raster data.
-
Hijmans R. and van Etten J. 2011. Raster: geographic analysis and modeling with raster data.
-
(2011)
-
-
Hijmans, R.1
van Etten, J.2
-
44
-
-
0035891825
-
Assessing habitat-suitability models with a virtual species
-
Hirzel A. H. et al. 2001. Assessing habitat-suitability models with a virtual species. Ecol. Model. 145: 111-121.
-
(2001)
Ecol. Model.
, vol.145
, pp. 111-121
-
-
Hirzel, A.H.1
-
45
-
-
73649109908
-
The effect of prevalence and its interaction with sample size on the reliability of species distribution models
-
Jiménez-Valverde A. et al. 2009. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10: 196-205.
-
(2009)
Community Ecol.
, vol.10
, pp. 196-205
-
-
Jiménez-Valverde, A.1
-
46
-
-
33645695410
-
Support vector machines in R
-
Karatzoglou A. et al. 2006. Support vector machines in R. J. Stat. Softw. 15: 1-28.
-
(2006)
J. Stat. Softw.
, vol.15
, pp. 1-28
-
-
Karatzoglou, A.1
-
47
-
-
78650325189
-
Prospective sampling based on model ensembles improves the detection of rare species
-
Le Lay G. et al. 2010. Prospective sampling based on model ensembles improves the detection of rare species. Ecography 33: 1015-1027.
-
(2010)
Ecography
, vol.33
, pp. 1015-1027
-
-
Le Lay, G.1
-
48
-
-
0027881344
-
Spatial autocorrelation - trouble or new paradigm
-
Legendre P. 1993. Spatial autocorrelation - trouble or new paradigm. Ecology 74: 1659-1673.
-
(1993)
Ecology
, vol.74
, pp. 1659-1673
-
-
Legendre, P.1
-
49
-
-
79957585520
-
Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal
-
Leitão P. J. et al. 2011. Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal. Int. J. Geogr. Inform. Sci. 25: 439-453.
-
(2011)
Int. J. Geogr. Inform. Sci.
, vol.25
, pp. 439-453
-
-
Leitão, P.J.1
-
50
-
-
0345040873
-
Classification and regression by random forest
-
Liaw A. and Wiener M. 2002. Classification and regression by random forest. R news 2: 18-22.
-
(2002)
R news
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
51
-
-
38949161848
-
AUC: a misleading measure of the performance of predictive distribution models
-
Lobo J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17: 145-151.
-
(2008)
Global Ecol. Biogeogr.
, vol.17
, pp. 145-151
-
-
Lobo, J.M.1
-
52
-
-
77953929268
-
The uncertain nature of absences and their importance in species distribution modelling
-
Lobo J. M. et al. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33: 103-114.
-
(2010)
Ecography
, vol.33
, pp. 103-114
-
-
Lobo, J.M.1
-
53
-
-
0034770214
-
Evaluating presence-absence models in ecology: the need to account for prevalence
-
Manel S. et al. 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38: 921-931.
-
(2001)
J. Appl. Ecol.
, vol.38
, pp. 921-931
-
-
Manel, S.1
-
54
-
-
70449518430
-
The performance of state-of-the-art modelling techniques depends on geographical distribution of species
-
Marmion M. et al. 2009. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol. Model. 220: 3512-3520.
-
(2009)
Ecol. Model.
, vol.220
, pp. 3512-3520
-
-
Marmion, M.1
-
55
-
-
84944477553
-
Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation
-
Marquardt D. W. 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12: 591-612.
-
(1970)
Technometrics
, vol.12
, pp. 591-612
-
-
Marquardt, D.W.1
-
57
-
-
33847206814
-
Effects of species' ecology on the accuracy of distribution models
-
McPherson J. M. and Jetz W. 2007. Effects of species' ecology on the accuracy of distribution models. Ecography 30: 135-151.
-
(2007)
Ecography
, vol.30
, pp. 135-151
-
-
McPherson, J.M.1
Jetz, W.2
-
59
-
-
34447638499
-
Predicting species distributions: a critical comparison of the most common statistical models using artificial species
-
Meynard C. N. and Quinn J. F. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34: 1455-1469.
-
(2007)
J. Biogeogr.
, vol.34
, pp. 1455-1469
-
-
Meynard, C.N.1
Quinn, J.F.2
-
60
-
-
79960237642
-
Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling
-
Naimi B. et al. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. J. Biogeogr. 38: 1497-1509.
-
(2011)
J. Biogeogr.
, vol.38
, pp. 1497-1509
-
-
Naimi, B.1
-
61
-
-
84892671323
-
-
NASA Land Processes Distributed Active Archive Center . Modis/Terra. 2002-2010. - LP DAAC.
-
NASA Land Processes Distributed Active Archive Center 2011. Modis/Terra. 2002-2010. - LP DAAC.
-
(2011)
-
-
-
63
-
-
80054113736
-
Finessing atlas data for species distribution models
-
Niamir A. et al. 2011. Finessing atlas data for species distribution models. Divers. Distrib. 17: 1173-1185.
-
(2011)
Divers. Distrib.
, vol.17
, pp. 1173-1185
-
-
Niamir, A.1
-
64
-
-
0029514351
-
Local spatial autocorrelation statistics - distributional issues and an application
-
Ord J. K. and Getis A. 1995. Local spatial autocorrelation statistics - distributional issues and an application. Geogr. Anal. 27: 286-306.
-
(1995)
Geogr. Anal.
, vol.27
, pp. 286-306
-
-
Ord, J.K.1
Getis, A.2
-
65
-
-
0035740890
-
Testing for local spatial autocorrelation in the presence of global autocorrelation
-
Ord J. K. and Getis A. 2001. Testing for local spatial autocorrelation in the presence of global autocorrelation. J. Reg. Sci. 41: 411-432.
-
(2001)
J. Reg. Sci.
, vol.41
, pp. 411-432
-
-
Ord, J.K.1
Getis, A.2
-
66
-
-
67149137995
-
Effects of species and habitat positional errors on the performance and interpretation of species distribution models
-
Osborne P. E. and Leitão P. J. 2009. Effects of species and habitat positional errors on the performance and interpretation of species distribution models. Divers. Distrib. 15: 671-681.
-
(2009)
Divers. Distrib.
, vol.15
, pp. 671-681
-
-
Osborne, P.E.1
Leitão, P.J.2
-
68
-
-
41449100102
-
Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
-
Phillips S. J. and Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175.
-
(2008)
Ecography
, vol.31
, pp. 161-175
-
-
Phillips, S.J.1
Dudik, M.2
-
69
-
-
27944446350
-
Maximum entropy modeling of species geographic distributions
-
Phillips S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231-259.
-
(2006)
Ecol. Model.
, vol.190
, pp. 231-259
-
-
Phillips, S.J.1
-
70
-
-
68949105820
-
The effect of species response form on species distribution model prediction and inference
-
Santika T. and Hutchinson M. F. 2009. The effect of species response form on species distribution model prediction and inference. Ecol. Model. 220: 2365-2379.
-
(2009)
Ecol. Model.
, vol.220
, pp. 2365-2379
-
-
Santika, T.1
Hutchinson, M.F.2
-
71
-
-
0030442316
-
Classification of kangaroo habitat distribution using three GIS models
-
Skidmore A. K. et al. 1996. Classification of kangaroo habitat distribution using three GIS models. Int. J. Geogr. Inform. Syst. 10: 441-454.
-
(1996)
Int. J. Geogr. Inform. Syst.
, vol.10
, pp. 441-454
-
-
Skidmore, A.K.1
-
72
-
-
64649098806
-
BIOMOD - a platform for ensemble forecasting of species distributions
-
Thuiller W. et al. 2009. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32: 369-373.
-
(2009)
Ecography
, vol.32
, pp. 369-373
-
-
Thuiller, W.1
-
74
-
-
3042650863
-
The point-radius method for georeferencing locality descriptions and calculating associated uncertainty
-
Wieczorek J. et al. 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int. J. Geogr. Inform. Sci. 18: 745-767.
-
(2004)
Int. J. Geogr. Inform. Sci.
, vol.18
, pp. 745-767
-
-
Wieczorek, J.1
-
75
-
-
0037202451
-
Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns
-
Zaniewski A. E. et al. 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol. Model. 157: 261-280.
-
(2002)
Ecol. Model.
, vol.157
, pp. 261-280
-
-
Zaniewski, A.E.1
|