메뉴 건너뛰기




Volumn 37, Issue 2, 2014, Pages 191-203

Where is positional uncertainty a problem for species distribution modelling?

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY ASSESSMENT; MONTE CARLO ANALYSIS; MUSEUM; SPECIES-AREA RELATIONSHIP; UNCERTAINTY ANALYSIS;

EID: 84892673138     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.1600-0587.2013.00205.x     Document Type: Article
Times cited : (1152)

References (75)
  • 1
    • 0029507498 scopus 로고
    • Local indicators of spatial association - LISA
    • Anselin L. 1995. Local indicators of spatial association - LISA. Geogr. Anal. 27: 93-115.
    • (1995) Geogr. Anal. , vol.27 , pp. 93-115
    • Anselin, L.1
  • 2
    • 33748529602 scopus 로고    scopus 로고
    • Five (or so) challenges for species distribution modelling
    • Araújo M. B. and Guisan A. 2006. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33: 1677-1688.
    • (2006) J. Biogeogr. , vol.33 , pp. 1677-1688
    • Araújo, M.B.1    Guisan, A.2
  • 3
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • Araújo M. B. and New M. 2006. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 42-47.
    • (2006) Trends Ecol. Evol. , vol.22 , pp. 42-47
    • Araújo, M.B.1    New, M.2
  • 4
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157: 101-118.
    • (2002) Ecol. Model. , vol.157 , pp. 101-118
    • Austin, M.1
  • 5
    • 33749998362 scopus 로고    scopus 로고
    • Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory
    • Austin M. P. et al. 2006. Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199: 197-216.
    • (2006) Ecol. Model. , vol.199 , pp. 197-216
    • Austin, M.P.1
  • 6
    • 0018441920 scopus 로고
    • A physically based, variable contributing area model of basin hydrology
    • Beven K. and Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24: 43-69.
    • (1979) Hydrol. Sci. J. , vol.24 , pp. 43-69
    • Beven, K.1    Kirkby, M.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Mach. Learn. 45: 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 45249096467 scopus 로고    scopus 로고
    • Predicting species distributions across the Amazonian and Andean regions using remote sensing data
    • Buermann W. et al. 2008. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 35: 1160-1176.
    • (2008) J. Biogeogr. , vol.35 , pp. 1160-1176
    • Buermann, W.1
  • 9
    • 84869142011 scopus 로고    scopus 로고
    • Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models
    • Bystriakova N. et al. 2012. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst. Biodivers. 10: 305-315.
    • (2012) Syst. Biodivers. , vol.10 , pp. 305-315
    • Bystriakova, N.1
  • 12
    • 0038820364 scopus 로고
    • Spatial processes: models and applications
    • Cliff A. D. and Ord J. K. 1981. Spatial processes: models and applications. Pion.
    • (1981) Pion.
    • Cliff, A.D.1    Ord, J.K.2
  • 14
    • 38449114584 scopus 로고    scopus 로고
    • Random forests for classification in ecology
    • Cutler D. R. et al. 2007. Random forests for classification in ecology. Ecology 88: 2783-2792.
    • (2007) Ecology , vol.88 , pp. 2783-2792
    • Cutler, D.R.1
  • 16
    • 84874720715 scopus 로고    scopus 로고
    • Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
    • Dormann C. F. et al. 2012. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 35: 1-20.
    • (2012) Ecography , vol.35 , pp. 1-20
    • Dormann, C.F.1
  • 18
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models
    • Elith J. and Graham C. H. 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 19
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 20
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J. et al. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-813.
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1
  • 21
    • 1942456846 scopus 로고    scopus 로고
    • An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data
    • Engler R. et al. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41: 263-274.
    • (2004) J. Appl. Ecol. , vol.41 , pp. 263-274
    • Engler, R.1
  • 22
    • 0037301478 scopus 로고    scopus 로고
    • Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance
    • Farber O. and Kadmon R. 2003. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Model. 160: 115-130.
    • (2003) Ecol. Model. , vol.160 , pp. 115-130
    • Farber, O.1    Kadmon, R.2
  • 23
    • 77952068730 scopus 로고    scopus 로고
    • Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering
    • Feeley K. J. and Silman M. R. 2010. Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering. J. Biogeogr. 37: 733-740.
    • (2010) J. Biogeogr. , vol.37 , pp. 733-740
    • Feeley, K.J.1    Silman, M.R.2
  • 24
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding A. H. and Bell J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 38-49.
    • (1997) Environ. Conserv. , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 25
    • 84923957743 scopus 로고    scopus 로고
    • Mapping species distributions: spatial inference and prediction, Cambridge Univ. Press.
    • Franklin J. 2010. Mapping species distributions: spatial inference and prediction. - Cambridge Univ. Press.
    • (2010)
    • Franklin, J.1
  • 26
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J. H. 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29: 1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 27
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32: 675-701.
    • (1937) J. Am. Stat. Assoc. , vol.32 , pp. 675-701
    • Friedman, M.1
  • 29
    • 84977363017 scopus 로고
    • The analysis of spatial association by use of distance statistics
    • Getis A. and Ord J. K. 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24: 189-206.
    • (1992) Geogr. Anal. , vol.24 , pp. 189-206
    • Getis, A.1    Ord, J.K.2
  • 32
    • 4344601500 scopus 로고    scopus 로고
    • New developments in museum-based informatics and applications in biodiversity analysis
    • Graham C. H. et al. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19: 497-503.
    • (2004) Trends Ecol. Evol. , vol.19 , pp. 497-503
    • Graham, C.H.1
  • 33
    • 38349178606 scopus 로고    scopus 로고
    • The influence of spatial errors in species occurrence data used in distribution models
    • Graham C. H. et al. 2008. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45: 239-247.
    • (2008) J. Appl. Ecol. , vol.45 , pp. 239-247
    • Graham, C.H.1
  • 34
    • 1342330862 scopus 로고    scopus 로고
    • Confronting multicollinearity in ecological multiple regression
    • Graham M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809-2815.
    • (2003) Ecology , vol.84 , pp. 2809-2815
    • Graham, M.H.1
  • 35
    • 40349093056 scopus 로고    scopus 로고
    • What matters for predicting the occurrences of trees: techniques, data, or species' characteristics?
    • Guisan A. et al. 2007. What matters for predicting the occurrences of trees: techniques, data, or species' characteristics? Ecol. Monogr. 77: 615-630.
    • (2007) Ecol. Monogr. , vol.77 , pp. 615-630
    • Guisan, A.1
  • 36
    • 50449103243 scopus 로고    scopus 로고
    • Georeferencing locality descriptions and computing associated uncertainty using a probabilistic approach
    • Guo Q. et al. 2008. Georeferencing locality descriptions and computing associated uncertainty using a probabilistic approach. Int. J. Geogr. Inform. Sci. 22: 1067-1090.
    • (2008) Int. J. Geogr. Inform. Sci. , vol.22 , pp. 1067-1090
    • Guo, Q.1
  • 37
    • 79960249880 scopus 로고    scopus 로고
    • On the effect of positional uncertainty in field measurements on the atmospheric correction of remotely sensed imagery
    • Sanchez-Vila X. (eds), Springer.
    • Hamm N. et al. 2004. On the effect of positional uncertainty in field measurements on the atmospheric correction of remotely sensed imagery. - In: Sanchez-Vila X. et al. (eds), geoENV IV - geostatistics for environmental applications. Springer, pp. 91-102.
    • (2004) geoENV IV - geostatistics for environmental applications , pp. 91-102
    • Hamm, N.1
  • 38
    • 84864031555 scopus 로고    scopus 로고
    • A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing
    • Hamm N. A. S. et al. 2012. A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing. Remote Sens. Environ. 124: 666-678.
    • (2012) Remote Sens. Environ. , vol.124 , pp. 666-678
    • Hamm, N.A.S.1
  • 39
    • 84892679149 scopus 로고    scopus 로고
    • GAM: generalized additive models.
    • Hastie T. 2011. GAM: generalized additive models.
    • (2011)
    • Hastie, T.1
  • 40
    • 84892669750 scopus 로고
    • Generalised additive models. - Chapman and Hall.
    • Hastie T. and Tibshirani R. 1990. Generalised additive models. - Chapman and Hall.
    • (1990)
    • Hastie, T.1    Tibshirani, R.2
  • 41
    • 33750352002 scopus 로고    scopus 로고
    • The effect of sample size and species characteristics on performance of different species distribution modeling methods
    • Hernandez P. A. et al. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.
    • (2006) Ecography , vol.29 , pp. 773-785
    • Hernandez, P.A.1
  • 42
    • 0000210741 scopus 로고    scopus 로고
    • Propagation of error in spatial modelling with GIS
    • Longley P. (eds), Wiley.
    • Heuvelink G. B. M. 1999. Propagation of error in spatial modelling with GIS. - In: Longley P. et al. (eds), Geographical information systems. Wiley, pp. 207-217.
    • (1999) Geographical information systems , pp. 207-217
    • Heuvelink, G.B.M.1
  • 43
    • 84892678155 scopus 로고    scopus 로고
    • Raster: geographic analysis and modeling with raster data.
    • Hijmans R. and van Etten J. 2011. Raster: geographic analysis and modeling with raster data.
    • (2011)
    • Hijmans, R.1    van Etten, J.2
  • 44
    • 0035891825 scopus 로고    scopus 로고
    • Assessing habitat-suitability models with a virtual species
    • Hirzel A. H. et al. 2001. Assessing habitat-suitability models with a virtual species. Ecol. Model. 145: 111-121.
    • (2001) Ecol. Model. , vol.145 , pp. 111-121
    • Hirzel, A.H.1
  • 45
    • 73649109908 scopus 로고    scopus 로고
    • The effect of prevalence and its interaction with sample size on the reliability of species distribution models
    • Jiménez-Valverde A. et al. 2009. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10: 196-205.
    • (2009) Community Ecol. , vol.10 , pp. 196-205
    • Jiménez-Valverde, A.1
  • 46
    • 33645695410 scopus 로고    scopus 로고
    • Support vector machines in R
    • Karatzoglou A. et al. 2006. Support vector machines in R. J. Stat. Softw. 15: 1-28.
    • (2006) J. Stat. Softw. , vol.15 , pp. 1-28
    • Karatzoglou, A.1
  • 47
    • 78650325189 scopus 로고    scopus 로고
    • Prospective sampling based on model ensembles improves the detection of rare species
    • Le Lay G. et al. 2010. Prospective sampling based on model ensembles improves the detection of rare species. Ecography 33: 1015-1027.
    • (2010) Ecography , vol.33 , pp. 1015-1027
    • Le Lay, G.1
  • 48
    • 0027881344 scopus 로고
    • Spatial autocorrelation - trouble or new paradigm
    • Legendre P. 1993. Spatial autocorrelation - trouble or new paradigm. Ecology 74: 1659-1673.
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre, P.1
  • 49
    • 79957585520 scopus 로고    scopus 로고
    • Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal
    • Leitão P. J. et al. 2011. Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal. Int. J. Geogr. Inform. Sci. 25: 439-453.
    • (2011) Int. J. Geogr. Inform. Sci. , vol.25 , pp. 439-453
    • Leitão, P.J.1
  • 50
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A. and Wiener M. 2002. Classification and regression by random forest. R news 2: 18-22.
    • (2002) R news , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 51
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17: 145-151.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 145-151
    • Lobo, J.M.1
  • 52
    • 77953929268 scopus 로고    scopus 로고
    • The uncertain nature of absences and their importance in species distribution modelling
    • Lobo J. M. et al. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33: 103-114.
    • (2010) Ecography , vol.33 , pp. 103-114
    • Lobo, J.M.1
  • 53
    • 0034770214 scopus 로고    scopus 로고
    • Evaluating presence-absence models in ecology: the need to account for prevalence
    • Manel S. et al. 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38: 921-931.
    • (2001) J. Appl. Ecol. , vol.38 , pp. 921-931
    • Manel, S.1
  • 54
    • 70449518430 scopus 로고    scopus 로고
    • The performance of state-of-the-art modelling techniques depends on geographical distribution of species
    • Marmion M. et al. 2009. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol. Model. 220: 3512-3520.
    • (2009) Ecol. Model. , vol.220 , pp. 3512-3520
    • Marmion, M.1
  • 55
    • 84944477553 scopus 로고
    • Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation
    • Marquardt D. W. 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12: 591-612.
    • (1970) Technometrics , vol.12 , pp. 591-612
    • Marquardt, D.W.1
  • 57
    • 33847206814 scopus 로고    scopus 로고
    • Effects of species' ecology on the accuracy of distribution models
    • McPherson J. M. and Jetz W. 2007. Effects of species' ecology on the accuracy of distribution models. Ecography 30: 135-151.
    • (2007) Ecography , vol.30 , pp. 135-151
    • McPherson, J.M.1    Jetz, W.2
  • 59
    • 34447638499 scopus 로고    scopus 로고
    • Predicting species distributions: a critical comparison of the most common statistical models using artificial species
    • Meynard C. N. and Quinn J. F. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34: 1455-1469.
    • (2007) J. Biogeogr. , vol.34 , pp. 1455-1469
    • Meynard, C.N.1    Quinn, J.F.2
  • 60
    • 79960237642 scopus 로고    scopus 로고
    • Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling
    • Naimi B. et al. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. J. Biogeogr. 38: 1497-1509.
    • (2011) J. Biogeogr. , vol.38 , pp. 1497-1509
    • Naimi, B.1
  • 61
    • 84892671323 scopus 로고    scopus 로고
    • NASA Land Processes Distributed Active Archive Center . Modis/Terra. 2002-2010. - LP DAAC.
    • NASA Land Processes Distributed Active Archive Center 2011. Modis/Terra. 2002-2010. - LP DAAC.
    • (2011)
  • 63
    • 80054113736 scopus 로고    scopus 로고
    • Finessing atlas data for species distribution models
    • Niamir A. et al. 2011. Finessing atlas data for species distribution models. Divers. Distrib. 17: 1173-1185.
    • (2011) Divers. Distrib. , vol.17 , pp. 1173-1185
    • Niamir, A.1
  • 64
    • 0029514351 scopus 로고
    • Local spatial autocorrelation statistics - distributional issues and an application
    • Ord J. K. and Getis A. 1995. Local spatial autocorrelation statistics - distributional issues and an application. Geogr. Anal. 27: 286-306.
    • (1995) Geogr. Anal. , vol.27 , pp. 286-306
    • Ord, J.K.1    Getis, A.2
  • 65
    • 0035740890 scopus 로고    scopus 로고
    • Testing for local spatial autocorrelation in the presence of global autocorrelation
    • Ord J. K. and Getis A. 2001. Testing for local spatial autocorrelation in the presence of global autocorrelation. J. Reg. Sci. 41: 411-432.
    • (2001) J. Reg. Sci. , vol.41 , pp. 411-432
    • Ord, J.K.1    Getis, A.2
  • 66
    • 67149137995 scopus 로고    scopus 로고
    • Effects of species and habitat positional errors on the performance and interpretation of species distribution models
    • Osborne P. E. and Leitão P. J. 2009. Effects of species and habitat positional errors on the performance and interpretation of species distribution models. Divers. Distrib. 15: 671-681.
    • (2009) Divers. Distrib. , vol.15 , pp. 671-681
    • Osborne, P.E.1    Leitão, P.J.2
  • 68
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
    • Phillips S. J. and Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175.
    • (2008) Ecography , vol.31 , pp. 161-175
    • Phillips, S.J.1    Dudik, M.2
  • 69
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231-259.
    • (2006) Ecol. Model. , vol.190 , pp. 231-259
    • Phillips, S.J.1
  • 70
    • 68949105820 scopus 로고    scopus 로고
    • The effect of species response form on species distribution model prediction and inference
    • Santika T. and Hutchinson M. F. 2009. The effect of species response form on species distribution model prediction and inference. Ecol. Model. 220: 2365-2379.
    • (2009) Ecol. Model. , vol.220 , pp. 2365-2379
    • Santika, T.1    Hutchinson, M.F.2
  • 71
    • 0030442316 scopus 로고    scopus 로고
    • Classification of kangaroo habitat distribution using three GIS models
    • Skidmore A. K. et al. 1996. Classification of kangaroo habitat distribution using three GIS models. Int. J. Geogr. Inform. Syst. 10: 441-454.
    • (1996) Int. J. Geogr. Inform. Syst. , vol.10 , pp. 441-454
    • Skidmore, A.K.1
  • 72
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD - a platform for ensemble forecasting of species distributions
    • Thuiller W. et al. 2009. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32: 369-373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1
  • 74
    • 3042650863 scopus 로고    scopus 로고
    • The point-radius method for georeferencing locality descriptions and calculating associated uncertainty
    • Wieczorek J. et al. 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int. J. Geogr. Inform. Sci. 18: 745-767.
    • (2004) Int. J. Geogr. Inform. Sci. , vol.18 , pp. 745-767
    • Wieczorek, J.1
  • 75
    • 0037202451 scopus 로고    scopus 로고
    • Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns
    • Zaniewski A. E. et al. 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol. Model. 157: 261-280.
    • (2002) Ecol. Model. , vol.157 , pp. 261-280
    • Zaniewski, A.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.