메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2616-2624

Becoming the expert - Interactive multi-class machine teaching

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE ALGORITHMS; PATTERN RECOGNITION; STUDENTS;

EID: 84959192539     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298877     Document Type: Conference Paper
Times cited : (65)

References (46)
  • 4
    • 84893402531 scopus 로고    scopus 로고
    • Teaching classification boundaries to humans
    • S. Basu and J. Christensen. Teaching classification boundaries to humans. In AAAI, 2013
    • (2013) AAAI
    • Basu, S.1    Christensen, J.2
  • 6
    • 84898786589 scopus 로고    scopus 로고
    • How do you tell a blackbird from a crow
    • T. Berg and P. N. Belhumeur. How do you tell a blackbird from a crow? In ICCV, 2013
    • (2013) ICCV
    • Berg, T.1    Belhumeur, P.N.2
  • 8
    • 84959210949 scopus 로고    scopus 로고
    • Algorithmic and human teaching of sequential decision tasks
    • M. Cakmak and M. Lopes. Algorithmic and human teaching of sequential decision tasks. In AAAI, 2012
    • (2012) AAAI
    • Cakmak, M.1    Lopes, M.2
  • 9
    • 84874841717 scopus 로고    scopus 로고
    • Evaluating Amazon's Mechanical Turk as a tool for experimental behavioral research
    • M. J. Crump, J. V. McDonnell, and T. M. Gureckis. Evaluating Amazon's Mechanical Turk as a tool for experimental behavioral research. PloS one, 2013
    • (2013) PloS One
    • Crump, M.J.1    McDonnell, J.V.2    Gureckis, T.M.3
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 11
    • 84887325349 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In CVPR, 2013
    • (2013) CVPR
    • Deng, J.1    Krause, J.2    Fei-Fei, L.3
  • 12
    • 84959189740 scopus 로고    scopus 로고
    • Understanding image virality
    • A. Deza and D. Parikh. Understanding image virality. In CVPR, 2015
    • (2015) CVPR
    • Deza, A.1    Parikh, D.2
  • 13
    • 85026929670 scopus 로고    scopus 로고
    • Recursive teaching dimension, learning complexity, and maximum classes
    • T. Doliwa, H. U. Simon, and S. Zilles. Recursive teaching dimension, learning complexity, and maximum classes. In Algorithmic Learning Theory, 2010
    • (2010) Algorithmic Learning Theory
    • Doliwa, T.1    Simon, H.U.2    Zilles, S.3
  • 14
    • 84880111450 scopus 로고    scopus 로고
    • Active teaching for inductive learners
    • J. Du and C. X. Ling. Active teaching for inductive learners. In SDM, 2011
    • (2011) SDM
    • Du, J.1    Ling, C.X.2
  • 15
    • 84866645923 scopus 로고    scopus 로고
    • RALF: A reinforced active learning formulation for object class recognition
    • S. Ebert, M. Fritz, and B. Schiele. RALF: A Reinforced Active Learning Formulation for Object Class Recognition. In CVPR, 2012
    • (2012) CVPR
    • Ebert, S.1    Fritz, M.2    Schiele, B.3
  • 17
    • 84877360073 scopus 로고    scopus 로고
    • Limits in decision making arise from limits in memory retrieval
    • G. Giguère and B. C. Love. Limits in decision making arise from limits in memory retrieval. PNAS, 110(19):7613-7618, 2013
    • (2013) PNAS , vol.110 , Issue.19 , pp. 7613-7618
    • Giguère, G.1    Love, B.C.2
  • 22
    • 77956007535 scopus 로고    scopus 로고
    • Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback
    • A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback. In CVPR, 2010
    • (2010) CVPR
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.3
  • 26
    • 82355187632 scopus 로고    scopus 로고
    • Casia online and offline Chinese handwriting databases
    • C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang. Casia online and offline chinese handwriting databases. ICDAR, 2011
    • (2011) ICDAR
    • Liu, C.-L.1    Yin, F.2    Wang, D.-H.3    Wang, Q.-F.4
  • 27
    • 84898792886 scopus 로고    scopus 로고
    • Active visual recognition with expertise estimation in crowdsourcing
    • C. Long, G. Hua, and A. Kapoor. Active visual recognition with expertise estimation in crowdsourcing. In ICCV, 2013
    • (2013) ICCV
    • Long, C.1    Hua, G.2    Kapoor, A.3
  • 29
    • 84911449013 scopus 로고    scopus 로고
    • Hierarchical subquery evaluation for active learning on a graph
    • O. Mac Aodha, N. D. Campbell, J. Kautz, and G. J. Brostow. Hierarchical Subquery Evaluation for Active Learning on a Graph. In CVPR, 2014
    • (2014) CVPR
    • Mac Aodha, O.1    Campbell, N.D.2    Kautz, J.3    Brostow, G.J.4
  • 30
    • 84919933195 scopus 로고    scopus 로고
    • Putting the scientist in the loop-accelerating scientific progress with interactive machine learning
    • O. Mac Aodha, V. Stathopoulos, G. J. Brostow, M. Terry, M. Girolami, and K. E. Jones. Putting the scientist in the loop-accelerating scientific progress with interactive machine learning. In ICPR, 2014
    • (2014) ICPR
    • Mac Aodha, O.1    Stathopoulos, V.2    Brostow, G.J.3    Terry, M.4    Girolami, M.5    Jones, K.E.6
  • 31
    • 0342973074 scopus 로고
    • Context theory of classification learning
    • D. L. Medin and M. M. Schaffer. Context theory of classification learning. Psychological review, 85(3):207, 1978
    • (1978) Psychological Review , vol.85 , Issue.3 , pp. 207
    • Medin, D.L.1    Schaffer, M.M.2
  • 33
    • 84937875010 scopus 로고    scopus 로고
    • Optimal teaching for limited-capacity human learners
    • K. R. Patil, X. Zhu, . Kopéc, and B. C. Love. Optimal teaching for limited-capacity human learners. In NIPS, 2014
    • (2014) NIPS
    • Patil, K.R.1    Zhu, X.2    Kopéc3    Love, B.C.4
  • 36
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In ICML, 2001
    • (2001) ICML
    • Roy, N.1    McCallum, A.2
  • 42
    • 84899025815 scopus 로고    scopus 로고
    • Machine teaching for Bayesian learners in the exponential family
    • X. Zhu. Machine teaching for Bayesian learners in the exponential family. In NIPS, 2013
    • (2013) NIPS
    • Zhu, X.1
  • 43
    • 84961203416 scopus 로고    scopus 로고
    • Machine teaching: An inverse problem to machine learning and an approach toward optimal education
    • X. Zhu. Machine teaching: An inverse problem to machine learning and an approach toward optimal education. AAAI Conference on Artificial Intelligence (Senior Member Track), 2015
    • (2015) AAAI Conference on Artificial Intelligence (Senior Member Track)
    • Zhu, X.1
  • 44
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, 2003
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 45
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In ICML workshops, 2003
    • (2003) ICML Workshops
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.