-
2
-
-
71149116544
-
Curriculum learning
-
New York, USA, June ACM Press.
-
Y Bengio, J Louradour, R Collobert, and J Weston. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09, pages 1-8, New York, USA, June 2009. ACM Press.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09
, pp. 1-8
-
-
Bengio, Y.1
Louradour, J.2
Collobert, R.3
Weston, J.4
-
5
-
-
67149129014
-
-
MIT Press, first edit edition
-
J Q Candela, M Sugiyama, A Schwaighofer, and N D Lawrence, editors. Dataset Shift in Machine Learning. MIT Press, first edit edition, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
Candela, J.Q.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
6
-
-
84899025815
-
Machine teaching for Bayesian learners in the exponential family
-
X Zhu. Machine Teaching for Bayesian Learners in the Exponential Family. In Advances in Neural Information Processing Systems, pages 1905-1913, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1905-1913
-
-
Zhu, X.1
-
9
-
-
67649946689
-
Recent developments in algorithmic teaching
-
A H Dediu, A M Ionescu, and C Martín-Vide, editors Springer, Berlin-Heidelberg, March
-
F J Balbach and T Zeugmann. Recent Developments in Algorithmic Teaching. In A H Dediu, A M Ionescu, and C Martín-Vide, editors, Language and Automata Theory and Applications, Volume 5457 of Lecture Notes in Computer Science, pages 1-18. Springer, Berlin-Heidelberg, March 2009.
-
(2009)
Language and Automata Theory and Applications, Volume 5457 of Lecture Notes in Computer Science
, pp. 1-18
-
-
Balbach, F.J.1
Zeugmann, T.2
-
11
-
-
84899029927
-
Optimizing instructional policies
-
R Lindsey, M Mozer, W J Huggins, and H Pashler. Optimizing Instructional Policies. In Advances in Neural Information Processing Systems, pages 2778-2786, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2778-2786
-
-
Lindsey, R.1
Mozer, M.2
Huggins, W.J.3
Pashler, H.4
-
12
-
-
84937821796
-
Categorization
-
K N Ochsner and S M Kosslyn, editors Oxford University Press
-
B C Love. Categorization. In K N Ochsner and S M Kosslyn, editors, Oxford Handbook of Cognitive Neuroscience, pages 342-358. Oxford University Press, 2013.
-
(2013)
Oxford Handbook of Cognitive Neuroscience
, pp. 342-358
-
-
Love, B.C.1
-
13
-
-
0342973074
-
Context theory of classification learning
-
D L Medin and M M Schaffer. Context theory of classification learning. Psychological Review, 85(3):207-238, 1978.
-
(1978)
Psychological Review
, vol.85
, Issue.3
, pp. 207-238
-
-
Medin, D.L.1
Schaffer, M.M.2
-
14
-
-
0022686961
-
Attention, similarity, and the identification-categorization relationship
-
General March
-
R M Nosofsky. Attention, similarity, and the identification-categorization relationship. Journal of experimental psychology. General, 115(1):39-61, March 1986.
-
(1986)
Journal of Experimental Psychology
, vol.115
, Issue.1
, pp. 39-61
-
-
Nosofsky, R.M.1
-
15
-
-
84886236189
-
Decoding the brain's algorithm for categorization from its neural implementation
-
M L Mack, A R Preston, and B C Love. Decoding the brain's algorithm for categorization from its neural implementation. Current Biology, 23:2023-2027, 2013.
-
(2013)
Current Biology
, vol.23
, pp. 2023-2027
-
-
Mack, M.L.1
Preston, A.R.2
Love, B.C.3
-
16
-
-
64149100367
-
Similarity-based classification: Concepts and algorithms
-
December
-
Y Chen, E K Garcia, M R Gupta, A Rahimi, and L Cazzanti. Similarity-based Classification: Concepts and Algorithms. The Journal of Machine Learning Research, 10:747-776, December 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 747-776
-
-
Chen, Y.1
Garcia, E.K.2
Gupta, M.R.3
Rahimi, A.4
Cazzanti, L.5
-
17
-
-
69949111927
-
Does cognitive science need kernels?
-
F Jakel, B Scholkopf, and F A Wichmann. Does cognitive science need kernels? Trends in Cognitive Science, 13(9):381-388, 2009.
-
(2009)
Trends in Cognitive Science
, vol.13
, Issue.9
, pp. 381-388
-
-
Jakel, F.1
Scholkopf, B.2
Wichmann, F.A.3
-
18
-
-
0031112464
-
An exemplar-based random walk model of speeded classification
-
April
-
R M Nosofsky and T J Palmeri. An exemplar-based random walk model of speeded classification. Psychological review, 104(2):266-300, April 1997.
-
(1997)
Psychological Review
, vol.104
, Issue.2
, pp. 266-300
-
-
Nosofsky, R.M.1
Palmeri, T.J.2
-
19
-
-
79960392344
-
Amazon's mechanical turk: A new source of inexpensive, yet high-quality, data?
-
February
-
M Buhrmester, T Kwang, and S D Gosling. Amazon's Mechanical Turk: A New Source of Inexpensive, Yet High-Quality, Data? Perspectives on Psychological Science, 6(1):3-5, February 2011.
-
(2011)
Perspectives on Psychological Science
, vol.6
, Issue.1
, pp. 3-5
-
-
Buhrmester, M.1
Kwang, T.2
Gosling, S.D.3
-
20
-
-
84874841717
-
Evaluating amazon's mechanical turk as a tool for experimental behavioral research
-
January
-
M J C Crump, J V McDonnell, and T M Gureckis. Evaluating Amazon's Mechanical Turk as a tool for experimental behavioral research. PloS one, 8(3):e57410, January 2013.
-
(2013)
PloS One
, vol.8
, Issue.3
-
-
Crump, M.J.C.1
McDonnell, J.V.2
Gureckis, T.M.3
-
21
-
-
84880682191
-
When does fading enhance perceptual category learning?
-
July
-
H Pashler and M C Mozer. When does fading enhance perceptual category learning? Journal of experimental psychology. Learning, memory, and cognition, 39(4):1162-73, July 2013.
-
(2013)
Journal of Experimental Psychology. Learning, Memory, and Cognition
, vol.39
, Issue.4
, pp. 1162-1173
-
-
Pashler, H.1
Mozer, M.C.2
|