메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3000-3007

Active visual recognition with expertise estimation in crowdsourcing

Author keywords

Active Learning; Crowdsourcing; Expectation Propagation; Gaussian Processes; Visual Recognition

Indexed keywords

BAYESIAN NETWORKS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); INFERENCE ENGINES;

EID: 84898792886     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.373     Document Type: Conference Paper
Times cited : (54)

References (30)
  • 1
    • 84883366075 scopus 로고    scopus 로고
    • Active learning and crowdsourcing for machine translation
    • V. Ambati, S. Vogel, and J. Carbonell. Active learning and crowdsourcing for machine translation. In LREC, 2010.
    • (2010) LREC
    • Ambati, V.1    Vogel, S.2    Carbonell, J.3
  • 2
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with gaussian processes for object categorization
    • R. U. Ashish Kapoor, Kristen Grauman and T. Darrell. Active learning with gaussian processes for object categorization. ICCV, 2007.
    • (2007) ICCV
    • Ashish Kapoor, R.U.1    Grauman, K.2    Darrell, T.3
  • 3
    • 85167436882 scopus 로고    scopus 로고
    • What if the irresponsible teachers are dominating? a method of training on samples and clustering on teachers
    • S. Chen, J. Zhang, G. Chen, and C. Zhang. What if the irresponsible teachers are dominating? a method of training on samples and clustering on teachers. In AAAI, 2010.
    • (2010) AAAI
    • Chen, S.1    Zhang, J.2    Chen, G.3    Zhang, C.4
  • 4
    • 71149089151 scopus 로고    scopus 로고
    • Good learners for evil teachers
    • O. Dekel and O. Shamir. Good learners for evil teachers. In ICML, 2009.
    • (2009) ICML
    • Dekel, O.1    Shamir, O.2
  • 5
    • 84867409394 scopus 로고    scopus 로고
    • Vox populi: Collecting high-quality labels from a crowd
    • O. Dekel and O. Shamir. Vox populi: Collecting high-quality labels from a crowd. In COLT, 2009.
    • (2009) COLT
    • Dekel, O.1    Shamir, O.2
  • 6
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • June
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255, June 2009.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 7
    • 80055061019 scopus 로고    scopus 로고
    • A probabilistic framework to learn from multiple annotators with time-varying accuracy
    • P. Donmez, J. Carbonell, and J. Schneider. A probabilistic framework to learn from multiple annotators with time-varying accuracy. In SDM, 2010.
    • (2010) SDM
    • Donmez, P.1    Carbonell, J.2    Schneider, J.3
  • 8
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling
    • P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning the accuracy of labeling sources for selective sampling. In SIGKDD, 2009.
    • (2009) SIGKDD
    • Donmez, P.1    Carbonell, J.G.2    Schneider, J.3
  • 9
    • 84866645923 scopus 로고    scopus 로고
    • Ralf: A reinforced active learning formulation for object class recognition
    • S. Ebert, M. Fritz, and B. Schiele. Ralf: A reinforced active learning formulation for object class recognition. In CVPR, 2012.
    • (2012) CVPR
    • Ebert, S.1    Fritz, M.2    Schiele, B.3
  • 10
    • 4043136951 scopus 로고    scopus 로고
    • Variational gaussian process classifiers
    • M. Gibbs and D. Mackay. Variational gaussian process classifiers. T-NN, 2000.
    • (2000) T-NN
    • Gibbs, M.1    MacKay, D.2
  • 11
    • 84860189970 scopus 로고    scopus 로고
    • Which faces to tag: Adding prior constraints into active learning
    • A. Kapoor, G. Hua, A. Akbarzadeh, and S. Baker. Which faces to tag: Adding prior constraints into active learning. ICCV, 2009.
    • (2009) ICCV
    • Kapoor, A.1    Hua, G.2    Akbarzadeh, A.3    Baker, S.4
  • 12
    • 58349104814 scopus 로고    scopus 로고
    • Outlier robust gaussian process classification
    • H.-C. Kim and Z. Ghahramani. Outlier robust gaussian process classification. In SSPR/SPR, pages 896-905, 2008.
    • (2008) SSPR/SPR , pp. 896-905
    • Kim, H.-C.1    Ghahramani, Z.2
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 14
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and svm training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification: Fast feature extraction and svm training. In CVPR, 2011.
    • (2011) CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6    Cao, L.7    Huang, T.8
  • 15
    • 84866653937 scopus 로고    scopus 로고
    • Stream-based joint exploration-exploitation active learning
    • C. Loy, T. Hospedales, T. Xiang, and S. Gong. Stream-based joint exploration-exploitation active learning. In CVPR, 2012.
    • (2012) CVPR
    • Loy, C.1    Hospedales, T.2    Xiang, T.3    Gong, S.4
  • 18
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean-field algorithms
    • M. Opper and O. Winther. Gaussian processes for classification: Mean-field algorithms. NC, 2000.
    • (2000) NC
    • Opper, M.1    Winther, O.2
  • 19
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • V. C. Raykar and S. Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. JMLR, 2012.
    • (2012) JMLR
    • Raykar, V.C.1    Yu, S.2
  • 21
    • 80052885179 scopus 로고    scopus 로고
    • High-dimensional signature compression for large-scale image classification
    • J. Sanchez and F. Perronnin. High-dimensional signature compression for large-scale image classification. In CVPR, 2011.
    • (2011) CVPR
    • Sanchez, J.1    Perronnin, F.2
  • 22
    • 70449556147 scopus 로고    scopus 로고
    • Temporal segmentation and activity classification from first-person sensing
    • E. H. Spriggs, F. D. L. Torre, and M. Hebert. Temporal segmentation and activity classification from first-person sensing. In CVPRW, 2009.
    • (2009) CVPRW
    • Spriggs, E.H.1    Torre, F.D.L.2    Hebert, M.3
  • 23
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning: Training object detectors with crawled data and crowds
    • S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training object detectors with crawled data and crowds. In CVPR, 2011.
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 25
    • 77956536129 scopus 로고    scopus 로고
    • Online crowdsourcing: Rating annotators and obtaining cost-effective labels
    • P. Welinder and P. Perona. Online crowdsourcing: Rating annotators and obtaining cost-effective labels. In CVPRW, 2010.
    • (2010) CVPRW
    • Welinder, P.1    Perona, P.2
  • 26
    • 0032289422 scopus 로고    scopus 로고
    • Bayesian classification with gaussian processes
    • dec
    • C. Williams and D. Barber. Bayesian classification with gaussian processes. T-PAMI, 20(12):1342-1351, dec 1998.
    • (1998) T-PAMI , vol.20 , Issue.12 , pp. 1342-1351
    • Williams, C.1    Barber, D.2
  • 27
    • 84898787897 scopus 로고    scopus 로고
    • Active learning from multiple knowledge sources
    • Y. Yan, R. Rosales, G. Fung, and J. Dy. Active learning from multiple knowledge sources. In AISTATS, 2012.
    • (2012) AISTATS
    • Yan, Y.1    Rosales, R.2    Fung, G.3    Dy, J.4
  • 28
    • 80053455236 scopus 로고    scopus 로고
    • Active learning from crowds
    • Y. Yan, R. Rosales, G. Fung, and J. G. Dy. Active learning from crowds. ICML, pages 1161-1168, 2011.
    • (2011) ICML , pp. 1161-1168
    • Yan, Y.1    Rosales, R.2    Fung, G.3    Dy, J.G.4
  • 29
    • 84863418365 scopus 로고    scopus 로고
    • Incremental relabeling for active learning with noisy crowdsourced annotations
    • L. Zhao, G. Sukthankar, and R. Sukthankar. Incremental relabeling for active learning with noisy crowdsourced annotations. In Social-Com, 2011.
    • (2011) Social-Com
    • Zhao, L.1    Sukthankar, G.2    Sukthankar, R.3
  • 30
    • 0031345518 scopus 로고    scopus 로고
    • Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization
    • C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 1997.
    • (1997) ACM Trans. Math. Softw.
    • Zhu, C.1    Byrd, R.H.2    Lu, P.3    Nocedal, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.