메뉴 건너뛰기




Volumn , Issue , 2009, Pages 889-896

Supervised learning from multiple experts: Whom to trust when everyone lies a bit

Author keywords

[No Author keywords available]

Indexed keywords

GOLD STANDARDS; MAJORITY VOTING; PROBABILISTIC APPROACHES;

EID: 71149084080     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (240)

References (11)
  • 1
    • 0003102944 scopus 로고
    • Maximum likei-hood estimation of observed error-rates using the EM algorithm
    • Dawid, A. P., & Skeene, A. M. (1979). Maximum likei-hood estimation of observed error-rates using the EM algorithm. Applied Statistics, 28, 20-28.
    • (1979) Applied Statistics , vol.28 , pp. 20-28
    • Dawid, A.P.1    Skeene, A.M.2
  • 4
    • 0031772593 scopus 로고    scopus 로고
    • Evaluation of diagnostic tests without a gold standard
    • Hui, S. L., & Zhou, X. H. (1998). Evaluation of diagnostic tests without a gold standard. Statistical Methods in Medical Research, 7, 354-370.
    • (1998) Statistical Methods in Medical Research , vol.7 , pp. 354-370
    • Hui, S.L.1    Zhou, X.H.2
  • 5
    • 0026712043 scopus 로고
    • Learning with an unreliable teacher
    • Lugosi, G. (1992). Learning with an unreliable teacher. Pattern Recognition, 25, 79-87.
    • (1992) Pattern Recognition , vol.25 , pp. 79-87
    • Lugosi, G.1
  • 6
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Kluwer Academic Publishers
    • Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models (pp. 355-368). Kluwer Academic Publishers.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.