메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3626-3633

RALF: A reinforced active learning formulation for object class recognition

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; ACTIVE LEARNING METHODS; CLASSIFICATION SCHEME; CLASSIFICATION TASKS; DATA SETS; DENSITY-BASED; EXPLORATION AND EXPLOITATION; LEARNING PROCESS; MARKOV DECISION PROCESSES; OBJECT CLASS RECOGNITION; PRIOR INFORMATION; SAMPLING STRATEGIES; TIME VARYING;

EID: 84866645923     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248108     Document Type: Conference Paper
Times cited : (114)

References (25)
  • 1
    • 21844444960 scopus 로고    scopus 로고
    • Online choice of active learning algorithms
    • 1, 2, 3
    • Y. Baram, R. El-yaniv, and K. Luz. Online Choice of Active Learning Algorithms. JMLR, 5:255-291, 2004. 1, 2, 3
    • (2004) JMLR , vol.5 , pp. 255-291
    • Baram, Y.1    El-Yaniv, R.2    Luz, K.3
  • 2
    • 79959485217 scopus 로고    scopus 로고
    • Exploration vs. exploitation in active learning: A Bayesian approach
    • 1, 2
    • A. Bondu, V. Lemaire, and M. Boullé. Exploration vs. exploitation in active learning: a Bayesian approach. In IJCNN, 2010. 1, 2
    • (2010) IJCNN
    • Bondu, A.1    Lemaire, V.2    Boullé, M.3
  • 3
    • 60849106960 scopus 로고    scopus 로고
    • Active learning for object classification: From exploration to exploitation
    • 1, 2, 3, 4
    • N. Cebron and M. R. Berthold. Active learning for object classification: from exploration to exploitation. DMKD, 18(2):283-299, 2009. 1, 2, 3, 4
    • (2009) DMKD , vol.18 , Issue.2 , pp. 283-299
    • Cebron, N.1    Berthold, M.R.2
  • 4
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 3
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 3
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 5
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • 2
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, 2008. 2
    • (2008) ICML
    • Dasgupta, S.1    Hsu, D.2
  • 6
    • 56449113842 scopus 로고    scopus 로고
    • Dual strategy active learning
    • 2
    • P. Donmez and J. Carbonell. Dual strategy active learning. In ECML, 2007. 2
    • (2007) ECML
    • Donmez, P.1    Carbonell, J.2
  • 7
    • 84896797897 scopus 로고    scopus 로고
    • Extracting structures in image collections for object recognition
    • 3
    • S. Ebert, D. Larlus, and B. Schiele. Extracting Structures in Image Collections for Object Recognition. In ECCV, 2010. 3
    • (2010) ECCV
    • Ebert, S.1    Larlus, D.2    Schiele, B.3
  • 9
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • 3
    • L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 28(4):594-611, 2006. 3
    • (2006) TPAMI , vol.28 , Issue.4 , pp. 594-611
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 10
    • 85162011798 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • 2
    • S. Huang, R. Jin, and Z. Zhou. Active Learning by Querying Informative and Representative Examples. In NIPS, 2010. 2
    • (2010) NIPS
    • Huang, S.1    Jin, R.2    Zhou, Z.3
  • 11
    • 70450192673 scopus 로고    scopus 로고
    • Active learning for large multi-class problems
    • 2
    • P. Jain and A. Kapoor. Active learning for large multi-class problems. In CVPR, 2009. 2
    • (2009) CVPR
    • Jain, P.1    Kapoor, A.2
  • 12
    • 70450181250 scopus 로고    scopus 로고
    • Multi-class active learning for image classification
    • 2, 3
    • A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for image classification. In CVPR, 2009. 2, 3
    • (2009) CVPR
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.3
  • 13
    • 0042441074 scopus 로고    scopus 로고
    • Analyzing appearance and contour based methods for object categorization
    • 3
    • B. Leibe and B. Schiele. Analyzing Appearance and Contour Based Methods for Object Categorization. In CVPR, 2003. 3
    • (2003) CVPR
    • Leibe, B.1    Schiele, B.2
  • 14
    • 14344265134 scopus 로고    scopus 로고
    • Active learning using preclustering
    • 2
    • H. T. Nguyen and A. Smeulders. Active learning using preclustering. In ICML, 2004. 2
    • (2004) ICML
    • Nguyen, H.T.1    Smeulders, A.2
  • 15
    • 33750360046 scopus 로고    scopus 로고
    • Balancing exploration and exploitation: A new algorithm for active machine learning
    • 1, 2, 3, 6, 7
    • T. Osugi and S. Scott. Balancing Exploration and Exploitation: A New Algorithm for Active Machine Learning. In ICDM, 2005. 1, 2, 3, 6, 7
    • (2005) ICDM
    • Osugi, T.1    Scott, S.2
  • 16
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • 2
    • G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. ICML, 2000. 2
    • (2000) ICML
    • Schohn, G.1    Cohn, D.2
  • 17
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks
    • 1, 2
    • B. Settles and M. Craven. An analysis of active learning strategies for sequence labeling tasks. In EMNLP, 2008. 1, 2
    • (2008) EMNLP
    • Settles, B.1    Craven, M.2
  • 18
    • 0001546350 scopus 로고
    • Active exploration in dynamic environments
    • 2
    • S. B. Thrun and K. Moeller. Active Exploration in Dynamic Environments. In NIPS, 1992. 2
    • (1992) NIPS
    • Thrun, S.B.1    Moeller, K.2
  • 19
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • 2
    • S. Tong and D. Koller. Support Vector Machine Active Learning with Applications to Text Classification. JMLR, pages 45-66, 2001. 2
    • (2001) JMLR , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 20
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning : Training object detectors with crawled data and crowds
    • 2
    • S. Vijayanarasimhan and K. Grauman. Large-Scale Live Active Learning : Training Object Detectors with Crawled Data and Crowds. In CVPR, 2011. 2
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 21
    • 0344551862 scopus 로고    scopus 로고
    • Automatically labeling video data using multi-class active learning
    • 2, 7
    • R. Yan, J. Yang, and A. Hauptmann. Automatically labeling video data using multi-class active learning. In ICCV, 2003. 2, 7
    • (2003) ICCV
    • Yan, R.1    Yang, J.2    Hauptmann, A.3
  • 22
    • 84866701680 scopus 로고    scopus 로고
    • Active learning based on locally linear reconstruction
    • 2
    • L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang. Active Learning based on Locally Linear Reconstruction. PAMI, 6(1), 2007. 2
    • (2007) PAMI , vol.6 , Issue.1
    • Zhang, L.1    Chen, C.2    Bu, J.3    Cai, D.4    He, X.5    Huang, T.S.6
  • 23
    • 51449089168 scopus 로고    scopus 로고
    • Active model selection for graph-based semi-supervised learning
    • 2
    • B. Zhao, F. Wang, C. Zhang, and Y. Song. Active model selection for graph-based semi-supervised learning. In ICASSP, 2008. 2
    • (2008) ICASSP
    • Zhao, B.1    Wang, F.2    Zhang, C.3    Song, Y.4
  • 24
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • 3
    • D. Zhou, O. Bousquet, and T. Lal. Learning with local and global consistency. In NIPS, 2004. 3
    • (2004) NIPS
    • Zhou, D.1    Bousquet, O.2    Lal, T.3
  • 25
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
    • 2
    • X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In ICML, WS, 2003. 2
    • (2003) ICML, WS
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.